检验医学 ›› 2017, Vol. 32 ›› Issue (10): 933-940.DOI: 10.3969/j.issn.1673-8640.2017.010.022
徐咏, 郑磊
收稿日期:
2016-07-21
出版日期:
2017-10-20
发布日期:
2017-11-20
作者简介:
null作者简介:徐 咏,女,1991年生,硕士,主要从事尿液细胞外囊泡在前列腺癌中的应用研究。
通信作者:郑 磊,联系电话:020-61642147。
基金资助:
XU Yong, ZHENG Lei
Received:
2016-07-21
Online:
2017-10-20
Published:
2017-11-20
摘要:
细胞外囊泡(EV)是机体内细胞在向外出芽和细胞膜裂变过程中释放出的微小囊泡,内含特异性生物活性分子,如蛋白质、核酸和脂质,因此有望成为临床疾病新型标志物。EV广泛存在于人类的各种体液中,其中尿液是研究EV的良好对象,具有标本量充足、标本易得且无创等特点。尿液EV内容物是潜在的疾病标志物。文章对尿液EV的检测方法及其临床应用作了综述。
中图分类号:
徐咏, 郑磊. 尿液细胞外囊泡检测及其临床应用进展[J]. 检验医学, 2017, 32(10): 933-940.
XU Yong, ZHENG Lei. Urine extracelluar vesicle determination and its research progress[J]. Laboratory Medicine, 2017, 32(10): 933-940.
方法 | 原理 | 优点 | 局限性 |
---|---|---|---|
超高速离心[ | 基于EV大小和密度不同沉淀 | 保持EV完整性,利于RNA、蛋 白质分析 | 耗时长、工作量大、 需特殊设备 |
超高速离心+蔗糖梯度[ | 在超高速离心基础上,据密度不同EV悬浮于不同浓度蔗糖溶液中 | 去除高丰度蛋白,利于蛋白质 分析,可将EV分成不同的群 | 耗时长、步骤复杂、 不适宜大批量标本 |
超滤法[ | 基于EV大小不同分离 | 简单、快速、标本量小 | 有蛋白污染、不适宜 RNA、蛋白质分析 |
离心-尺寸排阻法[ | 基于EV大小不同分离 | 去除高丰度蛋白,利于蛋白质 分析 | 耗时长、工作量大、 提取效率较低 |
沉淀法[ | 基于聚乙二醇分离 | 简单、快速、操作标准化、利 于miRNA分析 | 有蛋白污染,不适宜 蛋白质分析 |
免疫亲和力法[ | 基于EV标志物与其抗体特异性结合 分离 | 能得到某一特定类型EV | 非特异性EV |
微流控法[ | 基于液流力学分离 | 简便、快速、可将EV分成不同 的群 | 提取效率不高、不适 宜大标本量标本 |
液压透析法[ | 基于EV大小不同分离 | 可处理大量标本、保持EV完整 性、无需特殊设备 | 需后续处理高丰度蛋 白 |
表1 尿液EV分离提纯方法比较
方法 | 原理 | 优点 | 局限性 |
---|---|---|---|
超高速离心[ | 基于EV大小和密度不同沉淀 | 保持EV完整性,利于RNA、蛋 白质分析 | 耗时长、工作量大、 需特殊设备 |
超高速离心+蔗糖梯度[ | 在超高速离心基础上,据密度不同EV悬浮于不同浓度蔗糖溶液中 | 去除高丰度蛋白,利于蛋白质 分析,可将EV分成不同的群 | 耗时长、步骤复杂、 不适宜大批量标本 |
超滤法[ | 基于EV大小不同分离 | 简单、快速、标本量小 | 有蛋白污染、不适宜 RNA、蛋白质分析 |
离心-尺寸排阻法[ | 基于EV大小不同分离 | 去除高丰度蛋白,利于蛋白质 分析 | 耗时长、工作量大、 提取效率较低 |
沉淀法[ | 基于聚乙二醇分离 | 简单、快速、操作标准化、利 于miRNA分析 | 有蛋白污染,不适宜 蛋白质分析 |
免疫亲和力法[ | 基于EV标志物与其抗体特异性结合 分离 | 能得到某一特定类型EV | 非特异性EV |
微流控法[ | 基于液流力学分离 | 简便、快速、可将EV分成不同 的群 | 提取效率不高、不适 宜大标本量标本 |
液压透析法[ | 基于EV大小不同分离 | 可处理大量标本、保持EV完整 性、无需特殊设备 | 需后续处理高丰度蛋 白 |
疾病 | 标志物 | 分离方法 | 参考文献 |
---|---|---|---|
急性肾损伤 | Fetuin A | 超高速离心法 | [26] |
ATF3 | 超高速离心法 | [27] | |
NHE3 | 超高速离心法 | [28] | |
肾脏缺血再灌注 | 水通道蛋白-1 | 超高速离心法 | [29] |
局灶节段性肾小球硬化 | Wilm's tumor 1 | 超高速离心法 | [30] |
IgA肾病 | α1-抗胰酶蛋白、氨肽酶N、vasorin前体、血浆铜蓝蛋白 | 超高速离心联合蔗糖梯度法 | [31] |
糖尿病肾病 | miR-130、 miR-145、 miR-155 和 miR-424 | 超高速离心法 | [32] |
明胶酶、血浆铜蓝蛋白 | 超高速离心法 | [33] | |
肾小球疾病 | 二肽基肽酶4 | 滤器-离心法 | [34] |
AMBP、MLL3和 VDAC1 | 超高速离心法 | [35] | |
ADAM10 | 超高速离心法 | [36] | |
肾纤维化 | miR-29c和miR-200 | 超高速离心法 | [37] |
CD2AP | 超高速离心法 | [38] | |
慢性肾病 | IL-18和 NGAL | 超滤法 | [39] |
肾脏移植 | NGAL | 超高速离心法 | [40] |
CD133 | 超高速离心法 | [41] | |
多囊肾 | PKD1、PKD2和PKHD1 | 超高速离心法 | [42] |
前列腺癌 | ITGA3和ITGB1 | 超高速离心法 | [24] |
miR-34a | 超高速离心法 | [43] | |
LncRNA-p21 | 尿液外泌体RNA分离试剂盒 | [44] | |
TMPRSS2:ERG融合基因和PCA-3 | 超高速离心法 | [45] | |
TM256和LAMTOR1 | 超高速离心法 | [46] | |
钙黏蛋白3 | 超高速离心法 | [47] | |
膀胱癌 | EDIL-3 | 超高速离心联合蔗糖梯度法 | [48] |
LASS2和GALNT1 | 超高速离心法 | [49] | |
TACSTD2 | 超高速离心法 | [50] | |
肾癌 | MMP-9、DKK4、EMMPRIN和PODXL | 超高速离心法 | [51] |
类风湿关节炎 | CD14、CD3和CD19 | 超高速离心法 | [52] |
帕金森病 | Ser(P)-1292 LRRK2 | 超高速离心法 | [53] |
表2 疾病相关的尿液EV标志物
疾病 | 标志物 | 分离方法 | 参考文献 |
---|---|---|---|
急性肾损伤 | Fetuin A | 超高速离心法 | [26] |
ATF3 | 超高速离心法 | [27] | |
NHE3 | 超高速离心法 | [28] | |
肾脏缺血再灌注 | 水通道蛋白-1 | 超高速离心法 | [29] |
局灶节段性肾小球硬化 | Wilm's tumor 1 | 超高速离心法 | [30] |
IgA肾病 | α1-抗胰酶蛋白、氨肽酶N、vasorin前体、血浆铜蓝蛋白 | 超高速离心联合蔗糖梯度法 | [31] |
糖尿病肾病 | miR-130、 miR-145、 miR-155 和 miR-424 | 超高速离心法 | [32] |
明胶酶、血浆铜蓝蛋白 | 超高速离心法 | [33] | |
肾小球疾病 | 二肽基肽酶4 | 滤器-离心法 | [34] |
AMBP、MLL3和 VDAC1 | 超高速离心法 | [35] | |
ADAM10 | 超高速离心法 | [36] | |
肾纤维化 | miR-29c和miR-200 | 超高速离心法 | [37] |
CD2AP | 超高速离心法 | [38] | |
慢性肾病 | IL-18和 NGAL | 超滤法 | [39] |
肾脏移植 | NGAL | 超高速离心法 | [40] |
CD133 | 超高速离心法 | [41] | |
多囊肾 | PKD1、PKD2和PKHD1 | 超高速离心法 | [42] |
前列腺癌 | ITGA3和ITGB1 | 超高速离心法 | [24] |
miR-34a | 超高速离心法 | [43] | |
LncRNA-p21 | 尿液外泌体RNA分离试剂盒 | [44] | |
TMPRSS2:ERG融合基因和PCA-3 | 超高速离心法 | [45] | |
TM256和LAMTOR1 | 超高速离心法 | [46] | |
钙黏蛋白3 | 超高速离心法 | [47] | |
膀胱癌 | EDIL-3 | 超高速离心联合蔗糖梯度法 | [48] |
LASS2和GALNT1 | 超高速离心法 | [49] | |
TACSTD2 | 超高速离心法 | [50] | |
肾癌 | MMP-9、DKK4、EMMPRIN和PODXL | 超高速离心法 | [51] |
类风湿关节炎 | CD14、CD3和CD19 | 超高速离心法 | [52] |
帕金森病 | Ser(P)-1292 LRRK2 | 超高速离心法 | [53] |
[1] | GÁMEZ-VALERO A,LOZANO-RAMOS S I,BANCU I,et al. Urinary extracellular vesicles as source of biomarkers in kidney diseases[J]. Front Immunol,2015,6:6. |
[2] | WITWER K W,BUZÁS E I,BEMIS L T,et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research[J]. J Extracell Vesicles,2013,2. |
[3] | MITCHELL P J,WELTON J,STAFFURTH J,et al.Can urinary exosomes act as treatment response markers in prostate cancer?[J]. J Transl Med,2009,7:4. |
[4] | PISITKUN T,JOHNSTONE R,KNEPPER M A.Discovery of urinary biomarkers[J]. Mol Cell Proteomics,2006,5(10):1760-1771. |
[5] | ZHOU H,YUEN P S,PISITKUN T,et al.Collection,storage,preservation,and normalization of human urinary exosomes for biomarker discovery[J]. Kidney Int,2006,69(8):1471-1476. |
[6] | LV L L,CAO Y,LIU D,et al.Isolation and quantification of microRNAs from urinary exosomes/microvesicles for biomarker discovery[J]. Int J Biol Sci,2013,9(10):1021-1031. |
[7] | YUANA Y,BÖING A N,GROOTEMAAT A E,et al. Handling and storage of human body fluids for analysis of extracellular vesicles[J]. J Extracell Vesicles,2015,4:29260. |
[8] | ALVAREZ M L,KHOSROHEIDARI M,KANCHI RAVI R,et al.Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers[J]. Kidney Int,2012,82(9):1024-1032. |
[9] | LIN H,LIU X,XU X,et al.Quantification and size distribution of 24-hour urinary extracellular vesicles from healthy adults[J]. Nan Fang Yi Ke Da Xue Xue Bao,2015,35(11):1530-1534. |
[10] | GONZALES P A,ZHOU H,PISITKUN T,et al.Isolation and purification of exosomes in urine[J]. Methods Mol Biol,2010,641:89-99. |
[11] | MUSANTE L,SARASWAT M,RAVIDA A,et al.Recovery of urinary nanovesicles from ultracentrifugation supernatants[J]. Nephrol Dial Transplant,2013,28(6):1425-1433. |
[12] | 罗伊,王从容. 影响尿液储存稳定性的常见因素[J]. 检验医学,2014,29(1):86-90. |
[13] | ROOD I M,DEEGENS J K,MERCHANT M L,et al.Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome[J]. Kidney Int,2010,78(8):810-816. |
[14] | CHERUVANKY A,ZHOU H,PISITKUN T,et al.Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator[J]. Am J Physiol:Renal Physiol,2007,292(5):F1657-F1661. |
[15] | MUSANTE L,TATARUCH D E,HOLTHOFER H.Use and isolation of urinary exosomes as biomarkers for diabetic nephropathy[J]. Front Endocrinol(Lausanne),2014,5:149. |
[16] | TAYLOR D D,ZACHARIAS W,GERCEL-TAYLOR C.Exosome isolation for proteomic analyses and RNA profiling[J]. Methods Mol Biol,2011,728:235-246. |
[17] | SANTANA S M,ANTONYAK M A,CERIONE R A,et al.Microfluidic isolation of cancer-cell-derived microvesicles from hetergeneous extracellular shed vesicle populations[J]. Biomed Microdevices,2014,16(6):869-877. |
[18] | LIGA A,VLIEGENTHART A D,OOSTHUYZEN W,et al.Exosome isolation:a microfluidic road-map[J]. Lab Chip,2015,15(11):2388-2394. |
[19] | MUSANTE L,TATARUCH D,GU D,et al.A simplified method to recover urinary vesicles for clinical applications,and sample banking[J]. Sci Rep,2014,4:7532. |
[20] | LIU X,CHINELLO C,MUSANTE L,et al.Intraluminal proteome and peptidome of human urinary extracellular vesicles[J]. Proteomics-Clin Appl,2015,9(5-6):568-573. |
[21] | HUANG X,YUAN T,LIANG M,et al.Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer[J]. Eur Urol,2015,67(1):33-41. |
[22] | SAMSONOV R,SHTAM T,BURDAKOV V,et al.Lectin-induced agglutination method of urinary exosomes isolation followed by mi-RNA analysis:application for prostate cancer diagnostic[J]. Prostate,2016,76(1):68-79. |
[23] | WANG D,SUN W.Urinary extracellular microvesicles:isolation methods and prospects for urinary proteome[J]. Proteomics,2014,14(16):1922-1932. |
[24] | BIJNSDORP I V,GELDOF A A,LAVAEI M,et al.Exosomal ITGA3 interferes with non-cancerous prostate cell functions and is increased in urine exosomes of metastatic prostate cancer patients[J]. J Extracell Vesicles,2013,2. |
[25] | 林铖,姜傥. 液体活检技术在非小细胞肺癌患者EGFR-TKI继发耐药中的应用[J]. 检验医学,2016,31(10):835-843. |
[26] | ZHOU H,PISITKUN T,APONTE A,et al.Exosomal fetuin-a identified by proteomics:a novel urinary biomarker for detecting acute kidney injury[J]. Kidney Int,2006,70(10):1847-1857. |
[27] | ZHOU H,CHERUVANKY A,HU X,et al.Urinary exosomal transcription factors,a new class of biomarkers for renal disease[J]. Kidney Int,2008,74(5):613-621. |
[28] | DU CHEYRON D,DAUBIN C,POGGIOLI J,et al.Urinary measurement of Na+/H+ exchanger isoform 3 (NHE3) protein as new marker of tubule injury in critically ill patients with ARF[J]. Am J Kidney Dis,2003,42(3):497-506. |
[29] | SONODA H,YOKOTA-IKEDA N,OSHIKAWA S,et al.Decreased abundance of urinary exosomal aquaporin-1 in renal ischemia-reperfusion injury[J]. Am J Physiol Renal Physiol,2009,297(4):F1006-F1016. |
[30] | ZHOU H,KAJIYAMA H,TSUJI T,et al.Urinary exosomal Wilms' tumor-1 as a potential biomarker for podocyte injury[J]. Am J Physiol Renal Physiol,2013,305(4):F553-F559. |
[31] | MOON P,LEE J,YOU S,et al.Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy[J]. Proteomics,2011,11(12):2459-2475. |
[32] | BARUTTA F,TRICARICO M,CORBELLI A,et al.Urinary exosomal microRNAs in incipient diabetic nephropathy[J]. PLoS One,2013,8(11):e73798. |
[33] | GUDEHITHLU K P,GARCIA-GOMEZ I,VERNIK J,et al.In diabetic kidney disease urinary exosomes better represent kidney specific protein alterations than whole urine[J]. Am J Nephrol,2016,42(6):418-424. |
[34] | SUN A L,DENG J T,GUAN G J,et al.Dipeptidyl peptidase-Ⅳ is a potential molecular biomarker in diabetic kidney disease[J]. Diab Vasc Dis Res,2012,9(4):301-308. |
[35] | ZUBIRI I,POSADA-AYALA M,SANZ-MAROTO A,et al.Diabetic nephropathy induces changes in the proteome of human urinary exosomes as revealed by label-free comparative analysis[J]. J Proteomics, 2014,96:92-102. |
[36] | GUTWEIN P,SCHRAMME A,ABDEL-BAKKY M S,et al. ADAM10 is expressed in human podocytes and found in urinary vesicles of patients with glomerular kidney diseases[J]. J Biomed Sci,2010,17:3. |
[37] | LV L L,CAO Y H,NI H F,et al.MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis[J]. Am J Physiol Renal Physiol,2013,305(8):F1220-F1227. |
[38] | LV L L,CAO Y H,PAN M M,et al.CD2AP mRNA in urinary exosome as biomarker of kidney disease[J]. Clin Chim Acta,2014,428:26-31. |
[39] | PEAKE P W,PIANTA T J,SUCCAR L,et al.A comparison of the ability of levels of urinary biomarker proteins and exosomal mRNA to predict outcomes after renal transplantation[J]. PLoS One,2014,9(2):e98644. |
[40] | ALVAREZ S,SUAZO C,BOLTANSKY A,et al.Urinary exosomes as a source of kidney dysfunction biomarker in renal transplantation[J]. Transplant Proc,2013,45(10):3719-3723. |
[41] | DIMUCCIO V,RANGHINO A,PRATICÒ BARBATO L,et al.Urinary CD133+ extracellular vesicles are decreased in kidney transplanted patients with slow graft function and vascular damage[J]. PLoS One,2014,9(8):e104490. |
[42] | HOGAN M C,MANGANELLI L,WOOLLARD J R,et al.Characterization of PKD protein-positive exosome-like vesicles[J]. J Am Soc Nephrol,2009,20(2):278-288. |
[43] | CORCORAN C,RANI S,O'DRISCOLL L. MiR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression[J]. Prostate,2014,74(13):1320-1334. |
[44] | ISIN M,UYSALER E,ÖZGÜR E,et al. Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign disease[J]. Front Genet,2015,6:168. |
[45] | NILSSON J,SKOG J,NORDSTRAND A,et al.Prostate cancer-derived urine exosomes:a novel approach to biomarkers for prostate cancer[J]. Br J Cancer,2009,100(10):1603-1607. |
[46] | OVERBYE A,SKOTLAND T,KOEHLER C J,et al.Identification of prostate cancer biomarkers in urinary exosomes[J]. Oncotarget,2015,6(30):30357-30376. |
[47] | ROYO F,ZUNIGA-GARCIA P,TORRANO V,et al.Transcriptomic profiling of urine extracellular vesicles reveals alterations of CDH3 in prostate cancer[J]. Oncotarget,2016,7(6):6835-6846. |
[48] | BECKHAM C J,OLSEN J,YIN P N,et al.Bladder cancer exosomes contain edil-3/del1 and facilitate cancer progression[J]. J Urol,2014,192(2):583-592. |
[49] | PEREZ A,LOIZAGA A,ARCEO R,et al.A pilot study on the potential of RNA-associated to urinary vesicles as a suitable non-invasive source for diagnostic purposes in bladder cancer[J]. Cancers(Basel),2014,6(1):179-192. |
[50] | CHEN C L,LAI Y F,TANG P,et al.Comparative and targeted proteomic analyses of urinary microparticles from bladder cancer and hernia patients[J]. J Proteome Res,2012,11(12):5611-5629. |
[51] | RAIMONDO F,MOROSI L,CORBETTA S,et al.Differential protein profiling of renal cell carcinoma urinary exosomes[J]. Mol Biosyst,2013,9(6):1220-1233. |
[52] | VIÑUELA-BERNI V,DONÍZ-PADILLA L,FIGUEROA-VEGA N,et al. Proportions of several types of plasma and urine microparticles are increased in patients with rheumatoid arthritis with active disease[J]. Clin Exp Immunol,2015,180(3):442-451. |
[53] | FRASER K B,RAWLINS A B,CLARK R G,et al.Ser(P)-1292 LRRK2 in urinary exosomes is elevated in idiopathic Parkinson's disease[J]. Mov Disord,2016, 31(10):1543-1550. |
[54] | BARRERA-CHIMAL J,PEREZ-VILLALVA R,CORTES-GONZALEZ C,et al.Hsp72 is an early and sensitive biomarker to detect acute kidney injury[J]. EMBO Mol Med,2011,3(1):5-20. |
[55] | HERR P,KORNIYCHUK G,YAMAMOTO Y,et al.Regulation of TGF-(beta) signalling by N- |
acetylgalactosaminyltransferase-like 1[J]. Development,2008,135(10):1813-1822. | |
[56] | MESICEK J,LEE H,FELDMAN T,et al.Ceramide synthases 2,5,and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells[J]. Cell Signal,2010,22(9):1300-1307. |
[57] | SKOTLAND T,EKROOS K,KAUHANEN D,et al.Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers[J]. Eur J Cancer,2017,70:122-132. |
[58] | LI Y,ZHANG Y,QIU F,et al.Proteomic identification of exosomal LRG1:a potential urinary biomarker for detecting NSCLC[J]. Electrophoresis,2011,32(15):1976-1983. |
[1] | 周韵斓, 沈立松. 液体活检标志物在非小细胞肺癌中的临床应用和挑战[J]. 检验医学, 2023, 38(9): 807-811. |
[2] | 王刚强, 刁艳君, 何娟, 杨若凡, 闫宏斌, 汪沛, 卢佩, 李程华, 肖凤静, 郑善銮, 郝晓柯, 程翔, 刘家云. 尿液分析自动审核规则的建立、验证和临床应用[J]. 检验医学, 2023, 38(10): 957-966. |
[3] | 吴亚婷, 李卓林, 雷艳, 贾如雪, 张胜行, 王水良. 尿液中miRNA作为常见恶性肿瘤生物标志物研究进展[J]. 检验医学, 2023, 38(1): 94-99. |
[4] | 罗国菊, 金晶, 徐佳, 郝英英, 汪晓巍, 郭野. UF-5000全自动尿液分析仪健康成人全参数参考区间分析[J]. 检验医学, 2022, 37(8): 751-753. |
[5] | 潘芬, 潘雨萱, 石迎迎, 于方圆, 张泓. UroQuick尿液快速培养技术在儿童尿路感染诊断中的应用[J]. 检验医学, 2022, 37(7): 652-656. |
[6] | 卢佩, 丁振若, 郑善銮, 刘海波. 尿液中红细胞免疫球的检测及其临床意义[J]. 检验医学, 2021, 36(9): 932-934. |
[7] | 旦曲, 罗桑次珍, 泽仁曲措, 马超超, 刘治娟. 联合检测尿总蛋白避免尿微量白蛋白钩状效应的方法[J]. 检验医学, 2021, 36(5): 477-479. |
[8] | 王金铎, 崔云卿, 张慧, 王艳华, 李英华. 外阴部清洁操作对尿液生化指标检测结果的影响[J]. 检验医学, 2021, 36(11): 1169-1171. |
[9] | 丁爽, 陈卫民, 王炜, 马萍. 尿沉渣分析仪检测尿液结晶的性能[J]. 检验医学, 2020, 35(2): 156-158. |
[10] | 杨美玲, 刘浩, 杨林, 朱平. 泌尿系统感染生物标志物研究进展[J]. 检验医学, 2020, 35(2): 178-180. |
[11] | 刘春辰, 林慧娴, 郑磊. 细胞外囊泡检测技术及其临床应用进展[J]. 检验医学, 2020, 35(12): 1207-1212. |
[12] | 任丽, 侯岱, 申浩, 张时民. 尿液中检出阿昔洛韦药物结晶1例及文献复习[J]. 检验医学, 2020, 35(11): 1112-1114. |
[13] | 杜颖, 冯景, 杨传信, 范宏佳. 尿常规及尿液定量分析参数在早期尿路感染经验性用药中的应用[J]. 检验医学, 2020, 35(10): 1046-1048. |
[14] | 潘雪, 陶慧娟, 周道银, 徐健, 陈燕. 尿液细胞形态学检查在膀胱癌诊断中的应用[J]. 检验医学, 2020, 35(1): 84-86. |
[15] | 王雪颖, 刘欢, 周详, 杨若凡, 王春娥, 麻莲, 白碧峰, 李锋. 尿液水通道蛋白2在肾小管功能损伤评价中的价值[J]. 检验医学, 2019, 34(7): 626-629. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||