Laboratory Medicine ›› 2023, Vol. 38 ›› Issue (11): 1020-1025.DOI: 10.3969/j.issn.1673-8640.2023.11.003
Previous Articles Next Articles
CHEN Qing1, XU Rong2(), SUN Jingyong1(
)
Received:
2023-03-30
Revised:
2023-07-05
Online:
2023-11-30
Published:
2024-01-10
CLC Number:
CHEN Qing, XU Rong, SUN Jingyong. Resistance mechanisms and molecular epidemiology of Pseudomonas aeruginosa from patients with bronchiectasis in Shanghai[J]. Laboratory Medicine, 2023, 38(11): 1020-1025.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2023.11.003
抗菌药物 | PA(73株) | 黏液型PA(43株) | 非黏液型PA(30株) | P值 | |||||
---|---|---|---|---|---|---|---|---|---|
耐药 | 敏感 | 耐药 | 敏感 | 耐药 | 敏感 | ||||
左氧氟沙星 | 41.1 | 41.1 | 46.5 | 30.2 | 33.3 | 56.7 | 0.260 | ||
环丙沙星 | 34.2 | 47.9 | 37.2 | 39.5 | 30.0 | 60.0 | 0.523 | ||
亚胺培南 | 12.3 | 82.2 | 7.0 | 86.0 | 20.0 | 76.7 | 0.192① | ||
头孢吡肟 | 5.5 | 91.8 | 9.3 | 86.0 | 0 | 100.0 | 0.232① | ||
哌拉西林 | 4.1 | 94.5 | 7.0 | 90.7 | 0 | 100.0 | 0.380① | ||
头孢他啶 | 4.1 | 94.5 | 7.0 | 93.0 | 0 | 96.7 | 0.380① | ||
哌拉西林-他唑巴坦 | 2.7 | 91.8 | 4.7 | 90.7 | 0 | 93.3 | 0.509② | ||
美罗培南 | 2.7 | 91.8 | 2.3 | 90.7 | 3.3 | 93.3 | 1.000② | ||
妥布霉素 | 1.4 | 98.6 | 2.3 | 97.7 | 0 | 100.0 | 1.000② | ||
阿米卡星 | 0 | 98.6 | 0 | 100.0 | 0 | 96.7 | |||
多黏菌素B | 0 | 100.0 | 0 | 100.0 | 0 | 100.0 |
抗菌药物 | PA(73株) | 黏液型PA(43株) | 非黏液型PA(30株) | P值 | |||||
---|---|---|---|---|---|---|---|---|---|
耐药 | 敏感 | 耐药 | 敏感 | 耐药 | 敏感 | ||||
左氧氟沙星 | 41.1 | 41.1 | 46.5 | 30.2 | 33.3 | 56.7 | 0.260 | ||
环丙沙星 | 34.2 | 47.9 | 37.2 | 39.5 | 30.0 | 60.0 | 0.523 | ||
亚胺培南 | 12.3 | 82.2 | 7.0 | 86.0 | 20.0 | 76.7 | 0.192① | ||
头孢吡肟 | 5.5 | 91.8 | 9.3 | 86.0 | 0 | 100.0 | 0.232① | ||
哌拉西林 | 4.1 | 94.5 | 7.0 | 90.7 | 0 | 100.0 | 0.380① | ||
头孢他啶 | 4.1 | 94.5 | 7.0 | 93.0 | 0 | 96.7 | 0.380① | ||
哌拉西林-他唑巴坦 | 2.7 | 91.8 | 4.7 | 90.7 | 0 | 93.3 | 0.509② | ||
美罗培南 | 2.7 | 91.8 | 2.3 | 90.7 | 3.3 | 93.3 | 1.000② | ||
妥布霉素 | 1.4 | 98.6 | 2.3 | 97.7 | 0 | 100.0 | 1.000② | ||
阿米卡星 | 0 | 98.6 | 0 | 100.0 | 0 | 96.7 | |||
多黏菌素B | 0 | 100.0 | 0 | 100.0 | 0 | 100.0 |
蛋白突变位点 | 突变类型 | 突变株数/株 | 突变率/% |
---|---|---|---|
GyrA | |||
83 | Thr→Ile | 7 | 15.9 |
83、87 | Thr-83→Ala、Asp-87→Asn | 1 | 2.3 |
87 | Asp→Asn | 5 | 11.4 |
87 | Asp→Gly | 2 | 4.5 |
87 | Asp→Tyr | 1 | 2.3 |
87、805 | Asp-87→Asn、Phe-805→Leu | 1 | 2.3 |
87合并缺失 | Asp→Tyr合并缺失 | 1 | 2.3 |
87合并缺失 | Asp→Asn合并缺失 | 1 | 2.3 |
679 | Asp→Tyr | 2 | 4.5 |
75 | Gly→Ser | 1 | 2.3 |
231合并缺失 | Glu→Lys合并缺失 | 1 | 2.3 |
791合并缺失 | Ala→Val合并缺失 | 1 | 2.3 |
82合并插入 | Asp→Asn合并插入 | 1 | 2.3 |
缺失 | 4 | 9.1 | |
插入 | 1 | 2.3 | |
无突变 | 14 | 31.8 | |
GyrB | |||
466 | Ser→Phe | 4 | 9.1 |
466 | Phe→Tyr | 1 | 2.3 |
148 | His→Asn | 2 | 4.5 |
453 | Leu→Phe | 1 | 2.3 |
468 | Glu→Asp | 1 | 2.3 |
469 | Val→Phe | 1 | 2.3 |
632 | Ala→Thr | 1 | 2.3 |
721 | Met→Ile | 1 | 2.3 |
749 | Pro→Ser | 1 | 2.3 |
371、466 | 371Lys→Arg、466Ser→Phe | 1 | 2.3 |
无突变 | 30 | 68.2 | |
ParC | |||
646 | Val→Leu | 7 | 15.9 |
262 | His→Gln | 4 | 9.1 |
87 | Ser→Leu | 1 | 2.3 |
148 | Val→Gly | 1 | 2.3 |
187 | Val→Met | 1 | 2.3 |
513 | Glu→Asp | 1 | 2.3 |
197、498 | Ser-197→Leu、Glu-498→Asp | 1 | 2.3 |
262、301 | His-262→Gln、Arg-301→Cys | 1 | 2.3 |
284、646 | Lys-284→Glu、Val646→Leu | 1 | 2.3 |
无突变 | 26 | 59.1 | |
ParE | |||
533 | Asp→Glu | 4 | 9.1 |
33 | His→Pro | 1 | 2.3 |
142 | Asp→Asn | 1 | 2.3 |
188 | Lys→Thr | 1 | 2.3 |
346 | Ser→Thr | 1 | 2.3 |
419 | Gly→Asn | 1 | 2.3 |
452 | Gly→Ser | 1 | 2.3 |
492 | Ser→Tyr | 1 | 2.3 |
225、425 | Ala-225→Val、Ala-425→Val | 1 | 2.3 |
472、533 | Ala-472→Val、Asp-533→Glu | 1 | 2.3 |
473、533 | Ala-473→Val、Asp-533→Glu | 1 | 2.3 |
533、599 | Asp-533→Glu、Leu-599→Val | 1 | 2.3 |
473、501、533 | Ala-473→Val、Leu-501→Phe、Asp533→Glu | 1 | 2.3 |
插入 | 1 | 2.3 | |
无突变 | 27 | 61.4 |
蛋白突变位点 | 突变类型 | 突变株数/株 | 突变率/% |
---|---|---|---|
GyrA | |||
83 | Thr→Ile | 7 | 15.9 |
83、87 | Thr-83→Ala、Asp-87→Asn | 1 | 2.3 |
87 | Asp→Asn | 5 | 11.4 |
87 | Asp→Gly | 2 | 4.5 |
87 | Asp→Tyr | 1 | 2.3 |
87、805 | Asp-87→Asn、Phe-805→Leu | 1 | 2.3 |
87合并缺失 | Asp→Tyr合并缺失 | 1 | 2.3 |
87合并缺失 | Asp→Asn合并缺失 | 1 | 2.3 |
679 | Asp→Tyr | 2 | 4.5 |
75 | Gly→Ser | 1 | 2.3 |
231合并缺失 | Glu→Lys合并缺失 | 1 | 2.3 |
791合并缺失 | Ala→Val合并缺失 | 1 | 2.3 |
82合并插入 | Asp→Asn合并插入 | 1 | 2.3 |
缺失 | 4 | 9.1 | |
插入 | 1 | 2.3 | |
无突变 | 14 | 31.8 | |
GyrB | |||
466 | Ser→Phe | 4 | 9.1 |
466 | Phe→Tyr | 1 | 2.3 |
148 | His→Asn | 2 | 4.5 |
453 | Leu→Phe | 1 | 2.3 |
468 | Glu→Asp | 1 | 2.3 |
469 | Val→Phe | 1 | 2.3 |
632 | Ala→Thr | 1 | 2.3 |
721 | Met→Ile | 1 | 2.3 |
749 | Pro→Ser | 1 | 2.3 |
371、466 | 371Lys→Arg、466Ser→Phe | 1 | 2.3 |
无突变 | 30 | 68.2 | |
ParC | |||
646 | Val→Leu | 7 | 15.9 |
262 | His→Gln | 4 | 9.1 |
87 | Ser→Leu | 1 | 2.3 |
148 | Val→Gly | 1 | 2.3 |
187 | Val→Met | 1 | 2.3 |
513 | Glu→Asp | 1 | 2.3 |
197、498 | Ser-197→Leu、Glu-498→Asp | 1 | 2.3 |
262、301 | His-262→Gln、Arg-301→Cys | 1 | 2.3 |
284、646 | Lys-284→Glu、Val646→Leu | 1 | 2.3 |
无突变 | 26 | 59.1 | |
ParE | |||
533 | Asp→Glu | 4 | 9.1 |
33 | His→Pro | 1 | 2.3 |
142 | Asp→Asn | 1 | 2.3 |
188 | Lys→Thr | 1 | 2.3 |
346 | Ser→Thr | 1 | 2.3 |
419 | Gly→Asn | 1 | 2.3 |
452 | Gly→Ser | 1 | 2.3 |
492 | Ser→Tyr | 1 | 2.3 |
225、425 | Ala-225→Val、Ala-425→Val | 1 | 2.3 |
472、533 | Ala-472→Val、Asp-533→Glu | 1 | 2.3 |
473、533 | Ala-473→Val、Asp-533→Glu | 1 | 2.3 |
533、599 | Asp-533→Glu、Leu-599→Val | 1 | 2.3 |
473、501、533 | Ala-473→Val、Leu-501→Phe、Asp533→Glu | 1 | 2.3 |
插入 | 1 | 2.3 | |
无突变 | 27 | 61.4 |
基因名称 | 检出株数/株 | 检出率/% |
---|---|---|
β-内酰胺类 | ||
blaIMP-45 | 1 | 1.4 |
blaPAO | 73 | 100 |
blaOXA-1 | 1 | 1.4 |
blaOXA-50 | 18 | 24.7 |
blaOXA-395 | 8 | 11.0 |
blaOXA-396 | 21 | 28.8 |
blaOXA-485 | 1 | 1.4 |
blaOXA-486 | 21 | 28.8 |
blaOXA-488 | 8 | 11.0 |
blaOXA-494 | 17 | 23.3 |
氨基糖苷类 | ||
aph(3')-IIb | 73 | 100 |
aac(6')-Ib3 | 2 | 2.7 |
aac(6')-Ib-cr | 2 | 2.7 |
aadA2b | 1 | 1.4 |
磷霉素类 | ||
fosA | 73 | 100 |
氯霉素类 | ||
catB7 | 73 | 100 |
catB3 | 1 | 1.4 |
磺胺类 | ||
sul1 | 2 | 2.7 |
qacE | 2 | 2.7 |
喹诺酮类 | ||
crpP | 30 | 41.1 |
基因名称 | 检出株数/株 | 检出率/% |
---|---|---|
β-内酰胺类 | ||
blaIMP-45 | 1 | 1.4 |
blaPAO | 73 | 100 |
blaOXA-1 | 1 | 1.4 |
blaOXA-50 | 18 | 24.7 |
blaOXA-395 | 8 | 11.0 |
blaOXA-396 | 21 | 28.8 |
blaOXA-485 | 1 | 1.4 |
blaOXA-486 | 21 | 28.8 |
blaOXA-488 | 8 | 11.0 |
blaOXA-494 | 17 | 23.3 |
氨基糖苷类 | ||
aph(3')-IIb | 73 | 100 |
aac(6')-Ib3 | 2 | 2.7 |
aac(6')-Ib-cr | 2 | 2.7 |
aadA2b | 1 | 1.4 |
磷霉素类 | ||
fosA | 73 | 100 |
氯霉素类 | ||
catB7 | 73 | 100 |
catB3 | 1 | 1.4 |
磺胺类 | ||
sul1 | 2 | 2.7 |
qacE | 2 | 2.7 |
喹诺酮类 | ||
crpP | 30 | 41.1 |
[1] | Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing[S]. M100-Ed32,CLSI, 2022. |
[2] |
FRANCISCO A P, VAZ C, MONTEIRO P T, et al. PHYLOViZ:phylogenetic inference and data visualization for sequence based typing methods[J]. BMC bioinformatics, 2012, 13:87.
DOI |
[3] |
NASCIMENTO M, SOUSA A, RAMIREZ M, et al. PHYLOViZ 2.0:providing scalable data integration and visualization for multiple phylogenetic inference methods[J]. Bioinformatics, 2017, 33(1):128-129.
DOI URL |
[4] | 支气管扩张症专家共识撰写协作组, 中华医学会呼吸病学分会感染学组. 中国成人支气管扩张症诊断与治疗专家共识[J]. 中华结核和呼吸杂志, 2021, 44(4):311-321. |
[5] | 顾悦, 薛河东. 某地区支气管扩张症患者感染黏液型铜绿假单胞菌的耐药分析[J]. 中国卫生检验杂志, 2022, 32(15):1825-1828. |
[6] |
MARTINEZ-SOLANO L, MACIA M D, FAJARDO A, et al. Chronic Pseudomonas aeruginosa infection in chronic obstructive pulmonary disease[J]. Clin Infect Dis, 2008, 47(12):1526-1533.
DOI URL |
[7] | 全国细菌耐药监测网. 2020年全国细菌耐药监测报告[J]. 中华检验医学杂志, 2022, 45(2):122-136. |
[8] | 朱雯, 贾文祥. 铜绿假单胞菌对喹诺酮类药物耐药机制的研究进展[J]. 国外医学(微生物学分册), 2002, 25(3):20-23. |
[9] | CHÁVEZ-JACOBO V M, HERNÁNDEZ-RAMÍREZ K C, ROMO-RODRÍGUEZ P, et al. CrpP is a novel ciprofloxacin-modifying enzyme encoded by the Pseudomonas aeruginosa pUM505 plasmid[J]. Antimicrob Agents Chemother, 2018, 62(6):e02629. |
[10] |
XU Y, ZHANG Y, ZHENG X, et al. The prevalence and functional characteristics of CrpP-like in Pseudomonas aeruginosa isolates from China[J]. Eur J Clin Microbiol Infect Dis, 2021, 40(12):2651-2656.
DOI |
[11] |
HERNÁNDEZ-GARCÍA M, GARCÍA-CASTILLO M, GARCÍA-FERNÁNDEZ S, et al. Presence of chromosomal crpP-like genes is not always associated with ciprofloxacin resistance in Pseudomonas aeruginosa clinical isolates recovered in ICU patients from portugal and spain[J]. Microorganisms, 2021, 9(2):388.
DOI URL |
[12] |
KIM C H, KANG H Y, KIM B R, et al. Mutational inactivation of OprD in carbapenem-resistant Pseudomonas aeruginosa isolates from Korean hospitals[J]. J Microbiol, 2016, 54(1):44-49.
DOI URL |
[13] |
CABRERA R, FERNÁNDEZ-BARAT L, VÁZQUEZ N, et al. Resistance mechanisms and molecular epidemiology of Pseudomonas aeruginosa strains from patients with bronchiectasis[J]. J Antimicrob Chemother, 2022, 77(6):1600-1610.
DOI URL |
[14] |
POLVERINO E, GOEMINNE P C, MCDONNELL M J, et al. European respiratory society guidelines for the management of adult bronchiectasis[J]. Eur Respir J, 2017, 50(3):1700629.
DOI URL |
[15] |
CURRAN B, JONAS D, GRUNDMANN H, et al. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa[J]. J Clin Microbiol, 2004, 42(12):5644-5649.
DOI URL |
[16] |
PELEGRIN A C, PALMIERI M, MIRANDE C, et al. Pseudomonas aeruginosa:a clinical and genomics update[J]. FEMS Microbiol Rev, 2021, 45(6):fuab026.
DOI URL |
[17] |
FONSECA E L, MARIN M A, ENCINAS F, et al. Full characterization of the integrative and conjugative element carrying the metallo-β-lactamase blaSPM-1 and bicyclomycin bcr1 resistance genes found in the pandemic Pseudomonas aeruginosa clone SP/ST277[J]. J Antimicrob Chemother, 2015, 70(9):2547-2550.
DOI URL |
[18] |
DEL BARRIO-TOFIÑO E, LÓPEZ-CAUSAPÉ C, OLIVER A. Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired beta-lactamases:2020 update[J]. Int J Antimicrob Agents, 2020, 56(6):106196.
DOI URL |
[1] | MIAO Xingguo, YE Hui, SU Feifei. Relationship between GeneXpert MTB/RIF assay determination load and Mycobacterium tuberculosis culture and phenotype of rifampicin resistance [J]. Laboratory Medicine, 2023, 38(9): 874-877. |
[2] | WANG Chao, ZHAO Yu. Research progress on formation mechanism and eradication strategy of bacterial persisters [J]. Laboratory Medicine, 2023, 38(8): 790-795. |
[3] | ZHU Yurong, ZHANG Dan, HE Yaxing, LI Jingjing, HUANG Jing, LI Ting, LIU Peng, LIU Ronghua. Classification and epidemiology characteristics of Klebsiella pneumoniae isolated from clinic [J]. Laboratory Medicine, 2023, 38(5): 435-440. |
[4] | FANG Yongmei, ZHANG Yan, XU Xueying, ZHONG Feng. Correlation of Staphylococcus aureus drug resistance with drug resistance genes and virulence genes [J]. Laboratory Medicine, 2023, 38(4): 357-361. |
[5] | WANG Jiawei, ZHU Weinan, CHEN Yingying, JI Ping, WANG Ying. Clinical characteristics,molecular typing and drug resistance genes of carbapenem-resistant Klebsiella pneumoniae isolated from blood culturing [J]. Laboratory Medicine, 2023, 38(4): 362-367. |
[6] | SUN Wenyuan, WANG Pan, CUI Liyan. Role of brown adipose tissue in insulin resistance and its research progress [J]. Laboratory Medicine, 2023, 38(3): 297-300. |
[7] | REN Yanfei, ZHANG Min, YANG Tao, LI Rongkai, LIANG Xin. Analysis of pathogenic epidemiology of patients with lower respiratory tract infection in respiratory intensive care unit [J]. Laboratory Medicine, 2023, 38(2): 157-162. |
[8] | FEI Bing, LIU Ying, REN Yanying, GUO Mengyu, LIU Xinwei, LIU Dongmei, LI Yongwei. Research progress of cyclic diguanylate on the regulation of Pseudomonas aeruginosa biofilm [J]. Laboratory Medicine, 2023, 38(2): 186-189. |
[9] | DENG Chen, DAI Jiaze, QIU Lihong, SHEN Weiting, CAI Mufa, LUO Wenying. Molecular epidemic characteristics of hypervirulent Klebsiella pneumoniae in Zhanjiang [J]. Laboratory Medicine, 2023, 38(11): 1026-1031. |
[10] | RU Haohao, CHEN Lianyong, YANG Xing, CHEN Tao, YAN Shuangqun, XU Lin. Analysis of rifampicin resistance in Mycobacterium tuberculosis determined by Xpert MTB/RIF and phenotypic drug susceptibility test [J]. Laboratory Medicine, 2023, 38(11): 1032-1035. |
[11] | TIAN Yuanyuan, JIA Xiongfei. Advantages and pathogenicity of Enterococci [J]. Laboratory Medicine, 2023, 38(11): 1101-1105. |
[12] | WANG Su, DING Li, JIANG Wenrong, MIAO Yingxin, ZHANG Yanmei, ZHAO Hu. Research progress on drug resistance and treatment strategies of hypervirulent Klebsiella pneumoniae [J]. Laboratory Medicine, 2023, 38(1): 81-86. |
[13] | HAO Jiahui, YANG Zehua. Research progress of bacterial integron determination methods [J]. Laboratory Medicine, 2022, 37(9): 887-891. |
[14] | SUN Wei, XIA Shuai, FAN Yujian, MA Liyan. Drug resistance and biofilm formation abilities of Corynebacterium striatum with different genotypes [J]. Laboratory Medicine, 2022, 37(6): 505-509. |
[15] | LI Hua, WANG Weiliang, XIE Bei, YANG Yu, MENG Fanrong, WANG Nan, LIU Zhihui, ZHANG Yanbin. Feasibility of the determination of heterogeneous drug resistance to rifampicin in Mycobacterium tuberculosis by flow cytometry [J]. Laboratory Medicine, 2022, 37(6): 577-582. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||