Laboratory Medicine ›› 2023, Vol. 38 ›› Issue (8): 790-795.DOI: 10.3969/j.issn.1673-8640.2023.08.016
Previous Articles Next Articles
Received:
2022-03-17
Revised:
2022-11-28
Online:
2023-08-30
Published:
2023-10-30
CLC Number:
WANG Chao, ZHAO Yu. Research progress on formation mechanism and eradication strategy of bacterial persisters[J]. Laboratory Medicine, 2023, 38(8): 790-795.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2023.08.016
名称 | 类型 | 作用机制 | 作用菌种 | 参考文献 |
---|---|---|---|---|
CD437和CD1530 | 合成类视黄醇 | 破坏脂质双层 | 耐甲氧西林金黄色葡萄球菌持留菌 | [ |
α/β嵌合多肽分子刷 | 宿主防御肽聚合物 模拟物 | 干扰细胞膜,增加ROS水平 | 耐甲氧西林金黄色葡萄球菌生物膜和持留菌 | [ |
万古霉素-D-八精氨酸 | 双功能抗菌药物-转运 蛋白偶联物 | 在分子转运蛋白的协助下,万古霉素阻止细胞壁组装,抑制胱硫氨酸γ裂解酶 | 耐甲氧西林金黄色葡萄球菌生物膜和持留菌 | [ |
NL1、NL2、NL3 | 小分子酶抑制剂 | 金黄色葡萄球菌持留菌和铜绿假单胞菌持留菌 | [ | |
SPI009 | 小分子化合物 | 广泛破坏生物膜,增强协同抗菌药物活性 | 铜绿假单胞菌持留菌 | [ |
N-芳基化NH125类似物1 | 膜活性双亲性化合物,季铵阳离子 | 引起细胞膜去极化,破坏脂质双层 | 耐甲氧西林金黄色葡萄球菌持留菌 | [ |
聚(乙酰,精氨酰)氨基葡萄糖 | 大分子阳离子含糖 聚合物 | 增加细胞膜通透性,引起细胞膜去极化 | 铜绿假单胞菌持留菌 | [ |
名称 | 类型 | 作用机制 | 作用菌种 | 参考文献 |
---|---|---|---|---|
CD437和CD1530 | 合成类视黄醇 | 破坏脂质双层 | 耐甲氧西林金黄色葡萄球菌持留菌 | [ |
α/β嵌合多肽分子刷 | 宿主防御肽聚合物 模拟物 | 干扰细胞膜,增加ROS水平 | 耐甲氧西林金黄色葡萄球菌生物膜和持留菌 | [ |
万古霉素-D-八精氨酸 | 双功能抗菌药物-转运 蛋白偶联物 | 在分子转运蛋白的协助下,万古霉素阻止细胞壁组装,抑制胱硫氨酸γ裂解酶 | 耐甲氧西林金黄色葡萄球菌生物膜和持留菌 | [ |
NL1、NL2、NL3 | 小分子酶抑制剂 | 金黄色葡萄球菌持留菌和铜绿假单胞菌持留菌 | [ | |
SPI009 | 小分子化合物 | 广泛破坏生物膜,增强协同抗菌药物活性 | 铜绿假单胞菌持留菌 | [ |
N-芳基化NH125类似物1 | 膜活性双亲性化合物,季铵阳离子 | 引起细胞膜去极化,破坏脂质双层 | 耐甲氧西林金黄色葡萄球菌持留菌 | [ |
聚(乙酰,精氨酰)氨基葡萄糖 | 大分子阳离子含糖 聚合物 | 增加细胞膜通透性,引起细胞膜去极化 | 铜绿假单胞菌持留菌 | [ |
[1] |
BALABAN N Q, HELAINE S, LEWIS K, et al. Definitions and guidelines for research on antibiotic persistence[J]. Nat Rev Microbiol, 2019, 17(7):441-448.
DOI PMID |
[2] | HUEMER M, MAIRPADY SHAMBAT S, BERGADA-PIJUAN J, et al. Molecular reprogramming and phenotype switching in Staphylococcus aureus lead to high antibiotic persistence and affect therapy success[J]. Proc Natl Acad Sci U S A, 2021, 118(7):e2014920118. |
[3] |
PEYRUSSON F, VARET H, NGUYEN T K, et al. Intracellular Staphylococcus aureus persisters upon antibiotic exposure[J]. Nat Commun, 2020, 11(1):2200.
DOI |
[4] |
WILMAERTS D, WINDELS E M, VERSTRAETEN N, et al. General mechanisms leading to persister formation and awakening[J]. Trends Genet, 2019, 35(6):401-411.
DOI PMID |
[5] |
BAKKEREN E, DIARD M, HARDT W D. Evolutionary causes and consequences of bacterial antibiotic persistence[J]. Nat Rev Microbiol, 2020, 18(9):479-490.
DOI PMID |
[6] |
HARMS A, BRODERSEN D E, MITARAI N, et al. Toxins,targets,and triggers:an overview of toxin-antitoxin biology[J]. Mol Cell, 2018, 70(5):768-784.
DOI URL |
[7] | TALWAR S, PANDEY M, SHARMA C, et al. Role of VapBC12 toxin-antitoxin locus in cholesterol-induced mycobacterial persistence[J]. mSystems, 2020, 5(6):e00855. |
[8] |
PINEL-MARIE M L, BRIELLE R, RIFFAUD C, et al. RNA antitoxin SprF1 binds ribosomes to attenuate translation and promote persister cell formation in Staphylococcus aureus[J]. Nat Microbiol, 2021, 6(2):209-220.
DOI |
[9] |
ZHOU J, LI S, LI H, et al. Identification of a toxin-antitoxin system that contributes to persister formation by reducing NAD in Pseudomonas aeruginosa[J]. Microorganisms, 2021, 9(4):753.
DOI URL |
[10] |
GERDES K, BÆRENTSEN R, BRODERSEN D E. Phylogeny reveals novel hipa-homologous kinase families and toxin-antitoxin gene organizations[J]. mBio, 2021, 12(3):e0105821.
DOI URL |
[11] |
CHOWDHURY N, KWAN B W, WOOD T K. Persistence increases in the absence of the alarmone guanosine tetraphosphate by reducing cell growth[J]. Sci Rep, 2016, 6:20519.
DOI PMID |
[12] | VÖLZING K G, BRYNILDSEN M P. Stationary-phase persisters to ofloxacin sustain DNA damage and require repair systems only during recovery[J]. mBio, 2015, 6(5):e00731. |
[13] |
LOBRITZ M A, BELENKY P, PORTER C B, et al. Antibiotic efficacy is linked to bacterial cellular respiration[J]. Proc Natl Acad Sci U S A, 2015, 112(27):8173-8180.
DOI URL |
[14] |
VOGWILL T, COMFORT A C, FURIÓ V, et al. Persistence and resistance as complementary bacterial adaptations to antibiotics[J]. J Evol Biol, 2016, 29(6):1223-1233.
DOI URL |
[15] |
VAN DEN BERGH B, FAUVART M, MICHIELS J. Formation,physiology,ecology,evolution and clinical importance of bacterial persisters[J]. FEMS Microbiol Rev, 2017, 41(3):219-251.
DOI URL |
[16] |
BROWNING A P, SHARP J A, MAPDER T, et al. Persistence as an optimal hedging strategy[J]. Biophys J, 2021, 120(1):133-142.
DOI PMID |
[17] | VAN DEN BERGH B, MICHIELS J E, MICHIELS J. Experimental evolution of Escherichia coli persister levels using cyclic antibiotic treatments[J]. Methods Mol Biol, 2016, 1333:131-143. |
[18] |
GHOSH A, BALTEKIN Ö, WÄNESKOG M, et al. Contact-dependent growth inhibition induces high levels of antibiotic-tolerant persister cells in clonal bacterial populations[J]. EMBO J, 2018, 37(9):e98026.
DOI URL |
[19] |
MURAWSKI A M, BRYNILDSEN M P. Ploidy is an important determinant of fluoroquinolone persister survival[J]. Curr Biol, 2021, 31(10):2039-2050.
DOI URL |
[20] |
XU Y, LIU S, ZHANG Y, et al. DNA adenine methylation is involved in persister formation in E.coli[J]. Microbiol Res, 2021, 246:126709.
DOI URL |
[21] |
KIM W, ZHU W, HENDRICKS G L, et al. A new class of synthetic retinoid antibiotics effective against bacterial persisters[J]. Nature, 2018, 556(7699):103-107.
DOI URL |
[22] |
XIAO X, ZHANG S, CHEN S, et al. An alpha/beta chimeric peptide molecular brush for eradicating MRSA biofilms and persister cells to mitigate antimicrobial resistance[J]. Biomater Sci, 2020, 8(24):6883-6889.
DOI URL |
[23] |
ANTONOPLIS A, ZANG X, HUTTNER M A, et al. A dual-function antibiotic-transporter conjugate exhibits superior activity in sterilizing MRSA biofilms and killing persister cells[J]. J Am Chem Soc, 2018, 140(47):16140-16151.
DOI PMID |
[24] |
SHATALIN K, NUTHANAKANTI A, KAUSHIK A, et al. Inhibitors of bacterial H2S biogenesis targeting antibiotic resistance and tolerance[J]. Science, 2021, 372(6547):1169-1175.
DOI URL |
[25] | LIEBENS V, DEFRAINE V, KNAPEN W, et al. Identification of 1-(( 2,4-dichlorophenethyl)amino)-3-phenoxypropan-2-ol,a novel antibacterial compound active against persisters of Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2017, 61(9):e00836. |
[26] |
ABOUELHASSAN Y, BASAK A, YOUSAF H, et al. Identification of N-arylated NH125 analogues as rapid eradicating agents against MRSA persister cells and potent biofilm killers of Gram-positive pathogens[J]. Chembiochem, 2017, 18(4):352-357.
DOI PMID |
[27] |
ABOUELHASSAN Y, ZHANG P, DING Y, et al. Rapid kill assessment of an N-arylated NH125 analogue against drug-resistant microorganisms[J]. Medchemcomm, 2019, 10(5):712-716.
DOI URL |
[28] |
NARAYANASWAMY V P, KEAGY L L, DURIS K, et al. Novel glycopolymer eradicates antibiotic- and CCCP-induced persister cells in Pseudomonas aeruginosa[J]. Front Microbiol, 2018, 9:1724.
DOI URL |
[29] |
SIMONSON A W, UMSTEAD T M, LAWANPRASERT A, et al. Extracellular matrix-inspired inhalable aerogels for rapid clearance of pulmonary tuberculosis[J]. Biomaterials, 2021, 273:120848.
DOI URL |
[30] |
CHUNG E S, KO K S. Eradication of persister cells of Acinetobacter baumannii through combination of colistin and amikacin antibiotics[J]. J Antimicrob Chemother, 2019, 74(5):1277-1283.
DOI URL |
[31] |
BAEK M S, CHUNG E S, JUNG D S, et al. Effect of colistin-based antibiotic combinations on the eradication of persister cells in Pseudomonas aeruginosa[J]. J Antimicrob Chemother, 2020, 75(4):917-924.
DOI URL |
[32] |
ZHENG E J, STOKES J M, COLLINS J J. Eradicating bacterial persisters with combinations of strongly and weakly metabolism-dependent antibiotics[J]. Cell Chem Biol, 2020, 27(12):1544-1552.
DOI PMID |
[33] |
LU C H, SHIAU C W, CHANG Y C, et al. SC5005 dissipates the membrane potential to kill Staphylococcus aureus persisters without detectable resistance[J]. J Antimicrob Chemother, 2021, 76(8):2049-2056.
DOI URL |
[34] |
CRUZ-MUÑIZ M Y, LÓPEZ-JACOME L E, HERNÁNDEZ-DURÁN M, et al. Repurposing the anticancer drug mitomycin C for the treatment of persistent Acinetobacter baumannii infections[J]. Int J Antimicrob Agents, 2017, 49(1):88-92.
DOI URL |
[35] |
STOKES J M, YANG K, SWANSON K, et al. A deep learning approach to antibiotic discovery[J]. Cell, 2020, 180(4):688-702.
DOI PMID |
[36] |
DEFRAINE V, FAUVART M, MICHIELS J. Fighting bacterial persistence:current and emerging anti-persister strategies and therapeutics[J]. Drug Resist Updat, 2018, 38:12-26.
DOI URL |
[37] | MOK W W K, BRYNILDSEN M P. Timing of DNA damage responses impacts persistence to fluoroquinolones[J]. Proc Natl Acad Sci U S A, 2018, 115(27):E6301-E6309. |
[38] |
CHEVERTON A M, GOLLAN B, PRZYDACZ M, et al. A Salmonella toxin promotes persister formation through acetylation of tRNA[J]. Mol Cell, 2016, 63(1):86-96.
DOI URL |
[39] |
KIM J S, YAMASAKI R, SONG S, et al. Single cell observations show persister cells wake based on ribosome content[J]. Environ Microbiol, 2018, 20(6):2085-2098.
DOI URL |
[40] |
ALLEGRETTA G, MAURER C K, EBERHARD J, et al. In-depth profiling of MvfR-regulated small molecules in Pseudomonas aeruginosa after quorum sensing inhibitor treatment[J]. Front Microbiol, 2017, 8:924.
DOI URL |
[41] |
TKACHENKO A G, KASHEVAROVA N M, SIDOROV R Y, et al. A synthetic diterpene analogue inhibits mycobacterial persistence and biofilm formation by targeting(p)ppGpp synthetases[J]. Cell Chem Biol, 2021, 28(10):1420-1432.
DOI URL |
[42] |
LI T, YIN N, LIU H, et al. Novel inhibitors of toxin hipa reduce multidrug tolerant persisters[J]. ACS Med Chem Lett, 2016, 7(5):449-453.
DOI PMID |
[1] | GUO Chaonan, WANG Yanyan, ZHANG Bei, PANG Jingying, CUI Feifei, ZHAO Yongxin, SU Bing. Analysis of drug resistance and virulence of Klebsiella pneumoniae from different clinical samples [J]. Laboratory Medicine, 2024, 39(9): 880-887. |
[2] | WANG Yawen, ZHANG Yingying, NIU Wenyan. Influence of glycated hemoglobin A1c on pathogens of urinary tract infection in patients with type 2 diabetes mellitus [J]. Laboratory Medicine, 2024, 39(9): 895-899. |
[3] | WANG Xuqin, LIN Qianru, FENG Wanqing, DONG Yuan, YU Xiaolei, LIU Changhe, NING Zhen, SHEN Xin, PAN Qichao, LIN Yi. Validation of HIV-1 integrase genotyping sequence assay [J]. Laboratory Medicine, 2024, 39(4): 369-375. |
[4] | ZHAO Yanan, XIAO Weili, CAO Qixin, YAN Yan, CUI Xiuge, ZHAO Jianping. Relation of drug resistance,serotypes and genotypes of Group B Streptococcus in perinatal pregnant females and pregnancy outcomes [J]. Laboratory Medicine, 2024, 39(4): 382-386. |
[5] | DUAN Xuehan, WU Hua. Application of MALDI-TOF MS technology in clinical microbiological examination [J]. Laboratory Medicine, 2024, 39(4): 410-414. |
[6] | CHEN Yu, ZHAO Ya, WANG Lin. Microbial distribution and drug resistance in chronic dacryocystitis [J]. Laboratory Medicine, 2024, 39(3): 256-259. |
[7] | CHEN Huan, DONG Fang, LÜ Zhiyong, ZHEN Jinghui, CHEN Mei, SU Jianrong. Serotypes and drug resistance of invasive Streptococcus agalactiae in children [J]. Laboratory Medicine, 2024, 39(3): 260-264. |
[8] | MA Chen, ZHANG Yi, LI Fang, WANG Jing, CHEN Wei. Clinical characteristics,drug resistance and poor prognosis factors in children with invasive pneumococcal disease with necrotizing pneumonia [J]. Laboratory Medicine, 2024, 39(3): 265-271. |
[9] | WANG Ziwen, WU Wenjuan. Research progress on determination and mechanism of drug resistance and tolerance to Cryptococcus neoformans [J]. Laboratory Medicine, 2024, 39(12): 1140-1144. |
[10] | WANG Yanyan, WANG Junrui, ZHENG Wenqi, LAN Haixia, GUO Sufang. Drug resistance of Bacteroides isolated from clinic and characteristics of Bacteroides fragilis bft genotyping [J]. Laboratory Medicine, 2024, 39(1): 47-52. |
[11] | ZHU Yurong, ZHANG Dan, HE Yaxing, LI Jingjing, HUANG Jing, LI Ting, LIU Peng, LIU Ronghua. Classification and epidemiology characteristics of Klebsiella pneumoniae isolated from clinic [J]. Laboratory Medicine, 2023, 38(5): 435-440. |
[12] | FANG Yongmei, ZHANG Yan, XU Xueying, ZHONG Feng. Correlation of Staphylococcus aureus drug resistance with drug resistance genes and virulence genes [J]. Laboratory Medicine, 2023, 38(4): 357-361. |
[13] | WANG Jiawei, ZHU Weinan, CHEN Yingying, JI Ping, WANG Ying. Clinical characteristics,molecular typing and drug resistance genes of carbapenem-resistant Klebsiella pneumoniae isolated from blood culturing [J]. Laboratory Medicine, 2023, 38(4): 362-367. |
[14] | REN Yanfei, ZHANG Min, YANG Tao, LI Rongkai, LIANG Xin. Analysis of pathogenic epidemiology of patients with lower respiratory tract infection in respiratory intensive care unit [J]. Laboratory Medicine, 2023, 38(2): 157-162. |
[15] | DENG Chen, DAI Jiaze, QIU Lihong, SHEN Weiting, CAI Mufa, LUO Wenying. Molecular epidemic characteristics of hypervirulent Klebsiella pneumoniae in Zhanjiang [J]. Laboratory Medicine, 2023, 38(11): 1026-1031. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||