Laboratory Medicine ›› 2024, Vol. 39 ›› Issue (12): 1140-1144.DOI: 10.3969/j.issn.1673-8640.2024.12.002
Previous Articles Next Articles
Received:
2024-07-01
Revised:
2024-08-12
Online:
2024-12-30
Published:
2025-01-06
CLC Number:
WANG Ziwen, WU Wenjuan. Research progress on determination and mechanism of drug resistance and tolerance to Cryptococcus neoformans[J]. Laboratory Medicine, 2024, 39(12): 1140-1144.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2024.12.002
[1] | ZHAO Y, YE L, ZHAO F, et al. Cryptococcus neoformans,a global threat to human health[J]. Infect Dis Poverty, 2023, 12(1):20. |
[2] | IYER K R, REVIE N M, FU C, et al. Treatment strategies for cryptococcal infection:challenges,advances and future outlook[J]. Nat Rev Microbiol, 2021, 19(7):454-466. |
[3] |
FISHER M C, HAWKINS N J, SANGLARD D, et al. Worldwide emergence of resistance to antifungal drugs challenges human health and food security[J]. Science, 2018, 360(6390):739-742.
DOI PMID |
[4] | World Health Organization(WHO). WHO fungal priority pathogens list to guide research,development and public health action[EB/OL].(2022-10-25)[2023-12-31]. https://www.who.int/publications/i/item/9789240060241. |
[5] | PERFECT J R, DISMUKES W E, DROMER F, et al. Clinical practice guidelines for the management of cryptococcal disease:2010 update by the infectious diseases society of America[J]. Clin Infect Dis, 2010, 50(3):291-322. |
[6] | CHEN L, ZHANG L, XIE Y, et al. Confronting antifungal resistance,tolerance,and persistence:advances in drug target discovery and delivery systems[J]. Adv Drug Deliv Rev, 2023,200:115007. |
[7] | BERMAN J, KRYSAN D J. Drug resistance and tolerance in fungi[J]. Nat Rev Microbiol, 2020, 18(9):539. |
[8] | YANG J H, HUANG P Y, CHENG C W, et al. Antifungal susceptibility testing with YeastONE™ is not predictive of clinical outcomes of Cryptococcus neoformans var. grubii fungemia[J]. Med Mycol, 2021, 59(11):1114-1121. |
[9] | Clinical and Laboratory Standards Institute. Epidemiological cutoff values for antifungal susceptibility testing[S]. M57S,CLSI, 2022. |
[10] | European Committee on Antimicrobial Susceptibility Testing. Overview of antifungal ECOFFs and clinical breakpoints for yeasts,moulds and dermatophytes using the EUCAST E.Def 7.4,E.Def 9.4 and E.Def 11.0 procedures[S]. EUCAST, 2023. |
[11] | 范欣, 肖盟, 王贺, 等. 新型隐球菌显色微量肉汤稀释法药敏流行病学折点的建立[J]. 中华医院感染学杂志, 2016, 26(10):2215-2218. |
[12] | 樊红丽, 高丽, 杨翠先, 等. 云南省新型隐球菌药物敏感流行病学折点的建立[J]. 重庆医学, 2019, 48(18):3188-3190. |
[13] | ARENDRUP M C, PATTERSON T F. Multidrug-resistant Candida:epidemiology,molecular mechanisms,and treatment[J]. J Infect Dis, 2017, 216(suppl 3):S445-S451. |
[14] | THOMPSON J R, DOUGLAS C M, LI W, et al. A glucan synthase FKS1 homolog in Cryptococcus neoformans is single copy and encodes an essential function[J]. J Bacteriol, 1999, 181(2):444-453. |
[15] | ROBBINS N, CAPLAN T, COWEN L E. Molecular evolution of antifungal drug resistance[J]. Annu Rev Microbiol, 2017,71:753-775. |
[16] | RODERO L, MELLADO E, RODRIGUEZ A C, et al. G484S amino acid substitution in lanosterol 14-alpha demethylase(ERG11) is related to fluconazole resistance in a recurrent Cryptococcus neoformans clinical isolate[J]. Antimicrob Agents Chemother, 2003, 47(11):3653-3656. |
[17] | SIONOV E, CHANG Y C, GARRAFFO H M, et al. Identification of a Cryptococcus neoformans cytochrome P450 lanosterol 14α-demethylase(Erg11)residue critical for differential susceptibility between fluconazole/voriconazole and itraconazole/posaconazole[J]. Antimicrob Agents Chemother, 2012, 56(3):1162-1169. |
[18] | ATIM P B, MEYA D B, GERLACH E S, et al. Lack of association between fluconazole susceptibility and ERG11 nucleotide polymorphisms in Cryptococcus neoformans clinical isolates from Uganda[J]. J Fungi(Basel), 2022, 8(5):508. |
[19] | SELB R, FUCHS V, GRAF B, et al. Molecular typing and in vitro resistance of Cryptococcus neoformans clinical isolates obtained in Germany between 2011 and 2017[J]. Int J Med Microbiol, 2019, 309(6):151336. |
[20] | KELLY S L, LAMB D C, TAYLOR M, et al. Resistance to amphotericin B associated with defective sterol delta 8-->7 isomerase in a Cryptococcus neoformans strain from an AIDS patient[J]. FEMS Microbiol Lett, 1994, 122(1-2):39-42. |
[21] | LOYSE A, DROMER F, DAY J, et al. Flucytosine and cryptococcosis:time to urgently address the worldwide accessibility of a 50-year-old antifungal[J]. J Antimicrob Chemother, 2013, 68(11):2435-2444. |
[22] | HOPE W W, TABERNERO L, DENNING D W, et al. Molecular mechanisms of primary resistance to flucytosine in Candida albicans[J]. Antimicrob Agents Chemother, 2004, 48(11):4377-4386. |
[23] | BILLMYRE R B, APPLEN CLANCEY S, LI L X, et al. 5-Fluorocytosine resistance is associated with hypermutation and alterations in capsule biosynthesis in Cryptococcus[J]. Nat Commun, 2020, 11(1):127. |
[24] | CHANG Y C, LAMICHHANE A K, CAI H, et al. Moderate levels of 5-fluorocytosine cause the emergence of high frequency resistance in Cryptococci[J]. Nat Commun, 2021, 12(1):3418. |
[25] |
FISHER M C, ALASTRUEY-IZQUIERDO A, BERMAN J, et al. Tackling the emerging threat of antifungal resistance to human health[J]. Nat Rev Microbiol, 2022, 20(9):557-571.
DOI PMID |
[26] | GUSA A, WILLIAMS J D, CHO J E, et al. Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro[J]. Proc Natl Acad Sci U S A, 2020, 117(18):9973-9980. |
[27] | BOYCE K J, WANG Y, VERMA S, et al. Mismatch repair of DNA replication errors contributes to microevolution in the pathogenic fungus Cryptococcus neoformans[J]. mBio, 2017, 8(3):e00595-17. |
[28] | POSTERARO B, SANGUINETTI M, SANGLARD D, et al. Identification and characterization of a Cryptococcus neoformans ATP binding cassette(ABC) transporter-encoding gene,CnAFR1,involved in the resistance to fluconazole[J]. Mol Microbiol, 2003, 47(2):357-371. |
[29] | CHANG M, SIONOV E, KHANAL LAMICHHANE A, et al. Roles of three Cryptococcus neoformans and Cryptococcus gattii efflux pump-coding genes in response to drug treatment[J]. Antimicrob Agents Chemother, 2018, 62(4):e01751-17. |
[30] | WHELAN W L. The genetic basis of resistance to 5-fluorocytosine in Candida species and Cryptococcus neoformans[J]. Crit Rev Microbiol, 1987, 15(1):45-56. |
[31] | CHANG Z, YADAV V, LEE S C, et al. Epigenetic mechanisms of drug resistance in fungi[J]. Fungal Genet Biol, 2019,132:103253. |
[32] | JANBON G, MAENG S, YANG D H, et al. Characterizing the role of RNA silencing components in Cryptococcus neoformans[J]. Fungal Genet Biol, 2010, 47(12):1070-1080. |
[33] | PRIEST S J, YADAV V, ROTH C, et al. Uncontrolled transposition following RNAi loss causes hypermutation and antifungal drug resistance in clinical isolates of Cryptococcus neoformans[J]. Nat Microbiol, 2022, 7(8):1239-1251. |
[34] |
SHELEST E. Transcription factors in fungi[J]. FEMS Microbiol Lett, 2008, 286(2):145-151.
DOI PMID |
[35] | SONG M H, LEE J W, KIM M S, et al. A flucytosine-responsive Mbp1/Swi4-like protein,Mbs1,plays pleiotropic roles in antifungal drug resistance,stress response,and virulence of Cryptococcus neoformans[J]. Eukaryot Cell, 2012, 11(1):53-67. |
[36] | CHUN C D, LIU O W, MADHANI H D. A link between virulence and homeostatic responses to hypoxia during infection by the human fungal pathogen Cryptococcus neoformans[J]. PLoS Pathog, 2007, 3(2):e22. |
[37] | CHANG Y C, BIEN C M, LEE H, et al. Sre1p,a regulator of oxygen sensing and sterol homeostasis,is required for virulence in Cryptococcus neoformans[J]. Mol Microbiol, 2007, 64(3):614-629. |
[38] | JUNG K W, YANG D H, MAENG S, et al. Systematic functional profiling of transcription factor networks in Cryptococcus neoformans[J]. Nat Commun, 2015,6:6757. |
[39] | PAUL S, DOERING T L, MOYE-ROWLEY W S. Cryptococcus neoformans Yap1 is required for normal fluconazole and oxidative stress resistance[J]. Fungal Genet Biol, 2015,74:1-9. |
[40] | SIONOV E, LEE H, CHANG Y C, et al. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes[J]. PLoS Pathog, 2010, 6(4):e1000848. |
[41] | NGAMSKULRUNGROJ P, CHANG Y, HANSEN B, et al. Characterization of the chromosome 4 genes that affect fluconazole-induced disomy formation in Cryptococcus neoformans[J]. PLoS One, 2012, 7(3):e33022. |
[42] | TSAI H J, NELLIAT A. A double-edged sword:aneuploidy is a prevalent strategy in fungal adaptation[J]. Genes(Basel), 2019, 10(10):787. |
[43] |
ROSENBERG A, ENE I V, BIBI M, et al. Antifungal tolerance is a subpopulation effect distinct from resistance and is associated with persistent candidemia[J]. Nat Commun, 2018, 9(1):2470.
DOI PMID |
[44] | BHATTACHARYA S, HOLOWKA T, ORNER E P, et al. Gene duplication associated with increased fluconazole tolerance in Candida auris cells of advanced generational age[J]. Sci Rep, 2019, 9(1):5052. |
[45] | KIM S H, IYER K R, PARDESHI L, et al. Genetic analysis of Candida auris implicates Hsp90 in morphogenesis and azole tolerance and Cdr1 in azole resistance[J]. mBio, 2019, 10(1):e02529-18. |
[46] | COWEN L E. Hsp90 orchestrates stress response signaling governing fungal drug resistance[J]. PLoS Pathog, 2009, 5(8):e1000471. |
[47] | LEVIN-REISMAN I, RONIN I, GEFEN O, et al. Antibiotic tolerance facilitates the evolution of resistance[J]. Science, 2017, 355(6327):826-830. |
[1] | GUO Chaonan, WANG Yanyan, ZHANG Bei, PANG Jingying, CUI Feifei, ZHAO Yongxin, SU Bing. Analysis of drug resistance and virulence of Klebsiella pneumoniae from different clinical samples [J]. Laboratory Medicine, 2024, 39(9): 880-887. |
[2] | WANG Yawen, ZHANG Yingying, NIU Wenyan. Influence of glycated hemoglobin A1c on pathogens of urinary tract infection in patients with type 2 diabetes mellitus [J]. Laboratory Medicine, 2024, 39(9): 895-899. |
[3] | WANG Xuqin, LIN Qianru, FENG Wanqing, DONG Yuan, YU Xiaolei, LIU Changhe, NING Zhen, SHEN Xin, PAN Qichao, LIN Yi. Validation of HIV-1 integrase genotyping sequence assay [J]. Laboratory Medicine, 2024, 39(4): 369-375. |
[4] | ZHAO Yanan, XIAO Weili, CAO Qixin, YAN Yan, CUI Xiuge, ZHAO Jianping. Relation of drug resistance,serotypes and genotypes of Group B Streptococcus in perinatal pregnant females and pregnancy outcomes [J]. Laboratory Medicine, 2024, 39(4): 382-386. |
[5] | DUAN Xuehan, WU Hua. Application of MALDI-TOF MS technology in clinical microbiological examination [J]. Laboratory Medicine, 2024, 39(4): 410-414. |
[6] | CHEN Yu, ZHAO Ya, WANG Lin. Microbial distribution and drug resistance in chronic dacryocystitis [J]. Laboratory Medicine, 2024, 39(3): 256-259. |
[7] | CHEN Huan, DONG Fang, LÜ Zhiyong, ZHEN Jinghui, CHEN Mei, SU Jianrong. Serotypes and drug resistance of invasive Streptococcus agalactiae in children [J]. Laboratory Medicine, 2024, 39(3): 260-264. |
[8] | MA Chen, ZHANG Yi, LI Fang, WANG Jing, CHEN Wei. Clinical characteristics,drug resistance and poor prognosis factors in children with invasive pneumococcal disease with necrotizing pneumonia [J]. Laboratory Medicine, 2024, 39(3): 265-271. |
[9] | WANG Yanyan, WANG Junrui, ZHENG Wenqi, LAN Haixia, GUO Sufang. Drug resistance of Bacteroides isolated from clinic and characteristics of Bacteroides fragilis bft genotyping [J]. Laboratory Medicine, 2024, 39(1): 47-52. |
[10] | WANG Chao, ZHAO Yu. Research progress on formation mechanism and eradication strategy of bacterial persisters [J]. Laboratory Medicine, 2023, 38(8): 790-795. |
[11] | ZHU Yurong, ZHANG Dan, HE Yaxing, LI Jingjing, HUANG Jing, LI Ting, LIU Peng, LIU Ronghua. Classification and epidemiology characteristics of Klebsiella pneumoniae isolated from clinic [J]. Laboratory Medicine, 2023, 38(5): 435-440. |
[12] | FANG Yongmei, ZHANG Yan, XU Xueying, ZHONG Feng. Correlation of Staphylococcus aureus drug resistance with drug resistance genes and virulence genes [J]. Laboratory Medicine, 2023, 38(4): 357-361. |
[13] | WANG Jiawei, ZHU Weinan, CHEN Yingying, JI Ping, WANG Ying. Clinical characteristics,molecular typing and drug resistance genes of carbapenem-resistant Klebsiella pneumoniae isolated from blood culturing [J]. Laboratory Medicine, 2023, 38(4): 362-367. |
[14] | REN Yanfei, ZHANG Min, YANG Tao, LI Rongkai, LIANG Xin. Analysis of pathogenic epidemiology of patients with lower respiratory tract infection in respiratory intensive care unit [J]. Laboratory Medicine, 2023, 38(2): 157-162. |
[15] | DENG Chen, DAI Jiaze, QIU Lihong, SHEN Weiting, CAI Mufa, LUO Wenying. Molecular epidemic characteristics of hypervirulent Klebsiella pneumoniae in Zhanjiang [J]. Laboratory Medicine, 2023, 38(11): 1026-1031. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||