[1] |
GUO W, ZHU X, YAN L, et al. The present and future of whole-exome sequencing in studying and treating human reproductive disorders[J]. J Genet Genomics, 2018, 45(10):517-525.
DOI
PMID
|
[2] |
HEGDE M, SANTANI A, MAO R, et al. Development and validation of clinical whole-exome and whole-genome sequencing for detection of germline variants in inherited disease[J]. Arch Pathol Lab Med, 2017, 141(6):798-805.
DOI
PMID
|
[3] |
SHUKUYA T, TAKAHASHI K. Germline mutations in lung cancer[J]. Respir Investig, 2019, 57(3):201-206.
DOI
PMID
|
[4] |
WELANDER J, ANDREASSON A, JUHLIN C C, et al. Rare germline mutations identified by targeted next-generation sequencing of susceptibility genes in pheochromocytoma and paraganglioma[J]. J Clin Endocrinol Metab, 2014, 99(7):E1352-E1360.
|
[5] |
潘骏, 陈禹鑫, 逯艳文, 等. 家族性VHL综合征患者家系突变类型及二次打击的分析[J]. 现代泌尿外科杂志, 2023, 28(9):799-804.
|
[6] |
PARK H S, LEE Y H, HONG N, et al. Germline mutations related to primary hyperparathyroidism identified by next-generation sequencing[J]. Front Endocrinol(Lausanne), 2022,13:853171.
|
[7] |
方邦伟, 韦煜, 潘剑, 等. 855例前列腺癌患者错配修复基因胚系突变临床研究[J]. 浙江大学学报(医学版), 2023, 52(2):133-138.
|
[8] |
王嘉, 王杉, 金锋. BRCA1/2胚系突变乳腺癌临床诊疗进展[J]. 中国肿瘤临床, 2024, 51(18):957-962.
|
[9] |
肖婷, 吴丽文. 先天性肌无力综合征的诊治进展[J]. 中国当代儿科杂志, 2020, 22(6):672-676.
|
[10] |
NAKAMICHI K, VAN GELDER R N, CHAO J R, et al. Targeted adaptive long-read sequencing for discovery of complex phased variants in inherited retinal disease patients[J]. Sci Rep, 2023, 13(1):8535.
DOI
PMID
|
[11] |
曹文静, 高雅, 黄辉, 等. 全外显子组测序在单基因遗传病诊断中应用[C]. 郑州: 第十二次全国医学遗传学学术会议论文集, 2013.
|
[12] |
陈玉兰, 张又祥, 杨秀芳, 等. 全外显子测序技术在危重症新生儿遗传病中的应用价值[J]. 中国当代儿科杂志, 2020, 22(12):1261-1266.
|
[13] |
康亚斌. 基于全外显子测序技术对身材矮小患者的遗传病因研究[D]. 天津: 天津医科大学, 2020.
|
[14] |
SIMON A J, GOLAN A C, LEV A, et al. Whole exome sequencing(WES)approach for diagnosing primary immunodeficiencies(PIDs)in a highly consanguineous community[J]. Clin Immunol, 2020,214:108376.
|
[15] |
ZHANG L, PAN L, TENG Y, et al. Molecular diagnosis for 55 fetuses with skeletal dysplasias by whole-exome sequencing:a retrospective cohort study[J]. Clin Genet, 2021, 100(2):219-226.
|
[16] |
LORD J, MCMULLAN D J, EBERHARDT R Y, et al. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography(PAGE):a cohort study[J]. Lancet, 2019, 393(10173):747-757.
|
[17] |
TSE K Y, SURYA I U, IRWINDA R, et al. Diagnostic yield of exome sequencing in fetuses with sonographic features of skeletal dysplasias but normal karyotype or chromosomal microarray analysis:a systematic review[J]. Genes(Basel), 2023, 14(6):1203.
|
[18] |
ZEULI R, KARALI M, DE BRUIJN S E, et al. Whole genome sequencing identifies elusive variants in genetically unsolved Italian inherited retinal disease patients[J]. HGG Adv, 2024, 5(3):100314.
|
[19] |
陈锦云, 向碧霞, 孙骅, 等. 美国临床基因检测后遗传咨询的原则与实践[J]. 中华医学遗传学杂志, 2019, 36(1):92-98.
|
[20] |
中国抗癌协会血液肿瘤专业委员会, 中华医学会血液学分会, 中华医学会病理学分会. 二代测序技术在血液肿瘤中的应用中国专家共识(2018年版)[J]. 中华血液学杂志, 2018, 39(11):881-886.
|
[21] |
中国抗癌协会肿瘤标志专业委员会, 上海市抗癌协会肿瘤标志物专业委员会, 卢仁泉, 等. 基于中国人群的BRCA胚系突变筛查专家共识(2024年版)[J]. 中国癌症杂志, 2024, 34(2):220-238.
DOI
|
[22] |
MARSHALL C R, CHOWDHURY S, TAFT R J, et al. Best practices for the analytical validation of clinical whole-genome sequencing intended for the diagnosis of germline disease[J]. NPJ Genom Med, 2020,5:47.
|
[23] |
SEGAL J P. Next-generation proficiency testing[J]. J Mol Diagn, 2016, 18(4):469-470.
DOI
PMID
|
[24] |
SCHRIJVER I, AZIZ N, JENNINGS L J, et al. Methods-based proficiency testing in molecular genetic pathology[J]. J Mol Diagn, 2014, 16(3):283-287.
DOI
PMID
|
[25] |
RICHARDS C S, PALOMAKI G E, LACBAWAN F L, et al. Three-year experience of a CAP/ACMG methods-based external proficiency testing program for laboratories offering DNA sequencing for rare inherited disorders[J]. Genet Med, 2014, 16(1):25-32.
DOI
PMID
|
[26] |
DUNCAVAGE E J, ABEL H J, MERKER J D, et al. A model study of in silico proficiency testing for clinical next-generation sequencing[J]. Arch Pathol Lab Med, 2016, 140(10):1085-1091.
|
[27] |
SIMS D J, HARRINGTON R D, POLLEY E C, et al. Plasmid-based materials as multiplex quality controls and calibrators for clinical next-generation sequencing assays[J]. J Mol Diagn, 2016, 18(3):336-349.
DOI
PMID
|
[28] |
ZOOK J M, SAMAROV D, MCDANIEL J, et al. Synthetic spike-in standards improve run-specific systematic error analysis for DNA and RNA sequencing[J]. PLoS One, 2012, 7(7):e41356.
|
[29] |
DUNCAVAGE E J, ABEL H J, PFEIFER J D. In silico proficiency testing for clinical next-generation sequencing[J]. J Mol Diagn, 2017, 19(1):35-42.
|
[30] |
GARGIS A S, KALMAN L, BERRY M W, et al. Assuring the quality of next-generation sequencing in clinical laboratory practice[J]. Nat Biotechnol, 2012, 30(11):1033-1036.
DOI
PMID
|
[31] |
PRATAS D, PINHO A J, RODRIGUES J M. XS:a FASTQ read simulator[J]. BMC Res Notes, 2014,7:40.
|
[32] |
HUANG W, LI L, MYERS J R, et al. ART:a next-generation sequencing read simulator[J]. Bioinformatics, 2012, 28(4):593-594.
|
[33] |
HU X, YUAN J, SHI Y, et al. PIRS:profile-based Illumina pair-end reads simulator[J]. Bioinformatics, 2012, 28(11):1533-1535.
|