[1] |
ROMAGNANI P, REMUZZI G, GLASSOCK R, et al. Chronic kidney disease[J]. Nat Rev Dis Primers, 2017, 3:17088.
DOI
PMID
|
[2] |
谢晖, 沈瀚. 慢性肾脏病患者凝血功能变化及高凝状态影响因素分析[J]. 检验医学, 2021, 36(5):500-503.
DOI
|
[3] |
KDIGO Conference Participants. Genetics in chronic kidney disease:conclusions from a kidney disease:improving global outcomes(KDIGO) controversies conference[J]. Kidney Int, 2022, 101(6):1126-1141.
|
[4] |
朱永俊, 俞容, 李晓燕, 等. Ang Ⅱ联合TNF-α促使肾小管上皮HK-2细胞发生程序性坏死[J]. 中国病理生理杂志, 2021, 37(6):1084-1090.
|
[5] |
MÉNDEZ-GARCÍA L A, TREJO-MILLÁN F, MARTÍNEZ-REYES C P, et al. Infliximab ameliorates tumor necrosis factor-alpha-induced insulin resistance by attenuating PTP1B activation in 3T3L1 adipocytes in vitro[J]. Scand J Immunol, 2018, 88(5):e12716.
|
[6] |
ZHU Q, SCHERER P E. Immunologic and endocrine functions of adipose tissue:implications for kidney disease[J]. Nat Rev Nephrol, 2018, 14(2):105-120.
|
[7] |
GRANGE C, BUSSOLATI B. Extracellular vesicles in kidney disease[J]. Nat Rev Nephrol, 2022, 18(8):499-513.
|
[8] |
SHEN A R, ZHONG X, TANG T T, et al. Integrin,exosome and kidney disease[J]. Front Physiol, 2021, 11:627800.
|
[9] |
FEITENG C, LEI C, DENG L, et al. Relaxin inhibits renal fibrosis and the epithelial-to-mesenchymal transition via the Wnt/β-catenin signaling pathway[J]. Ren Fail, 2022, 44(1):513-524.
DOI
PMID
|
[10] |
ZHAO W M, WANG Z J, SHI R, et al. Analysis of the potential biological mechanisms of diosmin against renal fibrosis based on network pharmacology and molecular docking approach[J]. BMC Complement Med Ther, 2023, 23(1):157.
|
[11] |
GUREVICH E, SEGEV Y, LANDAU D. Growth hormone and IGF1 actions in kidney development and function[J]. Cells, 2021, 10(12):3371.
|
[12] |
RAMANATHAN G, ELUMALAI R, PERIYASAMY S, et al. Renin gene rs1464816 polymorphism contributes to chronic kidney disease progression in ADPKD[J]. J Biomed Sci, 2016, 23:1.
DOI
PMID
|
[13] |
CHENG Z, ZHANG X, ZHANG Y, et al. Role of MMP-2 and CD147 in kidney fibrosis[J]. Open Life Sci, 2022, 17(1):1182-1190.
DOI
PMID
|
[14] |
GERRITS T, BROUWER I J, DIJKSTRA K L, et al. Endoglin is an important mediator in the final common pathway of chronic kidney disease to end-stage renal disease[J]. Int J Mol Sci, 2022, 24(1):646.
|
[15] |
WEI J, XU Z, YAN X. The role of the macrophage-to-myofibroblast transition in renal fibrosis[J]. Front Immunol, 2022, 13:934377.
|
[16] |
NOH K, BACH D H, CHOI H J, et al. The hidden role of paxillin:localization to nucleus promotes tumor angiogenesis[J]. Oncogene, 2021, 40(2):384-395.
|
[17] |
甄永占, 胡刚, 章广玲, 等. 赖氨大黄酸对快速老化小鼠SAMP 10肾组织COL1A1、COL3A1和COL4A1表达的影响[J]. 第三军医大学学报, 2013, 35(17):1805-1808.
|
[18] |
郑君芙, 邢淑丽, 宋瑞芬, 等. 降钙素基因相关肽与肾脏疾病[J]. 辽宁中医学院学报, 2006, 8(3):127-128.
|
[19] |
VIJAYAN P, HACK S, YAO T, et al. LAMA2 and LOXL4 are candidate FSGS genes[J]. BMC Nephrol, 2021, 22(1):320.
|
[20] |
DALGAARD L T, SØRENSEN A E, HARDIKAR A A, et al. The microRNA-29 family:role in metabolism and metabolic disease[J]. Am J Physiol Cell Physiol, 2022, 323(2):C367-C377.
|
[21] |
TROJANOWICZ B, IMDAHL T, ULRICH C, et al. Circulating miR-421 targeting leucocytic angiotensin converting enzyme 2 is elevated in patients with chronic kidney disease[J]. Nephron, 2019, 141(1):61-74.
|
[22] |
ZHU Y, CUI H, LV J, et al. Angiotensin Ⅱ triggers RIPK3-MLKL-mediated necroptosis by activating the Fas/FasL signaling pathway in renal tubular cells[J]. PLoS One, 2020, 15(3):e0228385.
|
[23] |
ZHU Y, CUI H, LV J, et al. AT1 and AT2 receptors modulate renal tubular cell necroptosis in angiotensin Ⅱ-infused renal injury mice[J]. Sci Rep, 2019, 9(1):19450.
|
[24] |
LIN Z, CHEN A, CUI H, et al. Renal tubular epithelial cell necroptosis promotes tubulointerstitial fibrosis in patients with chronic kidney disease[J]. FASEB J, 2022, 36(12):e22625.
|