检验医学 ›› 2025, Vol. 40 ›› Issue (1): 96-101.DOI: 10.3969/j.issn.1673-8640.2025.01.017
收稿日期:
2024-05-06
修回日期:
2024-09-27
出版日期:
2025-01-30
发布日期:
2025-02-17
通讯作者:
史清海,E-mail:shiqinghai@aliyun.com。
作者简介:
马鑫鑫,女,1998年生,硕士,主要从事感染诊断标志物研究。
基金资助:
MA Xinxin1, LU Hongxiang2, SHI Qinghai3()
Received:
2024-05-06
Revised:
2024-09-27
Online:
2025-01-30
Published:
2025-02-17
摘要:
人磷脂爬行酶1(hPLSCR1)是跨膜蛋白家族的一员,以Ca2+依赖的方式介导膜磷脂的跨双层运动,并在细胞信号传导、成熟和凋亡中发挥重要作用,具有成为相关疾病治疗靶点或生物标志物的潜能。文章对hPLSCR1在抗病毒感染中的研究进展进行综述。
中图分类号:
马鑫鑫, 陆红祥, 史清海. 人磷脂爬行酶1在抗病毒感染中的研究进展[J]. 检验医学, 2025, 40(1): 96-101.
MA Xinxin, LU Hongxiang, SHI Qinghai. Human phospholipid scramblase 1 in antiviral infection[J]. Laboratory Medicine, 2025, 40(1): 96-101.
[1] | RAYALA S, SIVAGNANAM U, GUMMADI S N. Biophysical characterization of the DNA binding motif of human phospholipid scramblase 1[J]. Eur Biophys J, 2022, 51(7-8):579-593. |
[2] | SAKURAGI T, NAGATA S. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases[J]. Nat Rev Mol Cell Biol, 2023, 24(8):576-596. |
[3] | WANG Y, KINOSHITA T. The role of lipid scramblases in regulating lipid distributions at cellular membranes[J]. Biochem Soc Trans, 2023, 51(5):1857-1869. |
[4] | TANG D, WANG Y, DONG X, et al. Scramblases and virus infection[J]. Bioessays, 2022, 44(12):e2100261. |
[5] | XU D, JIANG W, WU L, et al. PLSCR1 is a cell-autonomous defence factor against SARS-CoV-2 infection[J]. Nature, 2023, 619(7971):819-827. |
[6] | DAL COL J, LAMBERTI M J, NIGRO A, et al. Phospholipid scramblase 1:a protein with multiple functions via multiple molecular interactors[J]. Cell Commun Signal, 2022, 20(1):78. |
[7] | MERTOWSKA P, SMOLAK K, MERTOWSKI S, et al. Immunomodulatory role of interferons in viral and bacterial infections[J]. Int J Mol Sci, 2023, 24(12):10115. |
[8] | LI M. Fortifying immunity:PLSCR1 picks battle against SARS-CoV-2[J]. Cell Host Microbe, 2023, 31(9):1417-1419. |
[9] | KOUSATHANAS A, PAIRO-CASTINEIRA E, RAWLIK K, et al. Whole-genome sequencing reveals host factors underlying critical COVID-19[J]. Nature, 2022, 607(7917):97-103. |
[10] |
HILLIGAN K L, NAMASIVAYAM S, CLANCY C S, et al. Bacterial-induced or passively administered interferon gamma conditions the lung for early control of SARS-CoV-2[J]. Nat Commun, 2023, 14(1):8229.
DOI PMID |
[11] |
OUDIT G Y, WANG K, VIVEIROS A, et al. Angiotensin-converting enzyme 2-at the heart of the COVID-19 pandemic[J]. Cell, 2023, 186(5):906-922.
DOI PMID |
[12] | THIRUMUGAM G, RADHAKRISHNAN Y, RAMAMURTHI S, et al. A systematic review on impact of SARS-CoV-2 infection[J]. Microbiol Res, 2023, 271:127364. |
[13] | LE PEN J, PANICCIA G, KINAST V, et al. A genome-wide arrayed CRISPR screen identifies PLSCR1 as an intrinsic barrier to SARS-CoV-2 entry that recent virus variants have evolved to resist[J]. PLoS Biol, 2024, 22(9):e3002767. |
[14] |
YANG H, DONG Y, BIAN Y, et al. The influenza virus PB2 protein evades antiviral innate immunity by inhibiting JAK1/STAT signalling[J]. Nat Commun, 2022, 13(1):6288.
DOI PMID |
[15] |
陈丹阳, 郑思钰, 郑锐林, 等. 流感病毒研究进展[J]. 检验医学, 2023, 38(7):696-703.
DOI |
[16] | LUO W, ZHANG J, LIANG L, et al. Phospholipid scramblase 1 interacts with influenza A virus NP,impairing its nuclear import and thereby suppressing virus replication[J]. PLoS Pathog, 2018, 14(1):e1006851. |
[17] |
LIU Y, LIN S, XIE Y, et al. ILDR1 promotes influenza A virus replication through binding to PLSCR1[J]. Sci Rep, 2022, 12(1):8515.
DOI PMID |
[18] |
SHAN S, ZHAO X, JIA J. Comprehensive approach to controlling chronic hepatitis B in China[J]. Clin Mol Hepatol, 2024, 30(2):135-143.
DOI PMID |
[19] | YANG J, ZHU X, LIU J, et al. Inhibition of Hepatitis B virus replication by phospholipid scramblase 1 in vitro and in vivo[J]. Antiviral Res, 2012, 94(1):9-17. |
[20] | ASHOURI S, KHOR S S, HITOMI Y, et al. Genome-wide association study for chronic hepatitis B infection in the Thai population[J]. Front Genet, 2022, 13:887121. |
[21] | WANG F, SONG H, XU F, et al. Role of hepatitis B virus non-structural protein HBx on HBV replication,interferon signaling,and hepatocarcinogenesis[J]. Front Microbiol, 2023, 14:1322892. |
[22] | CHOONNASARD A, SHOFA M, OKABAYASHI T, et al. Conserved functions of Orthohepadnavirus X proteins to inhibit type-Ⅰ interferon signaling[J]. Int J Mol Sci, 2024, 25(7):3753. |
[23] | HILLAIRE M L B, LAWRENCE P, LAGRANGE B. IFN-γ:a crucial player in the fight against HBV infection?[J]. Immune Netw, 2023, 23(4):e30. |
[24] | SANCHEZ V, BRITT W. Human cytomegalovirus egress:overcoming barriers and co-opting cellular functions[J]. Viruses, 2021, 14(1):15. |
[25] |
AMSLER L, VERWEIJ M, DEFILIPPIS V R. The tiers and dimensions of evasion of the type I interferon response by human cytomegalovirus[J]. J Mol Biol, 2013, 425(24):4857-4871.
DOI PMID |
[26] | DELL'OSTE V,BIOLATTI M,GALITSKA G,et al. Tuning the orchestra:HCMV vs. Innate Immunity[J]. Front Microbiol, 2020, 11:661. |
[27] | SADANARI H, TAKEMOTO M, ISHIDA T, et al. The interferon-inducible human PLSCR1 protein is a restriction factor of human cytomegalovirus[J]. Microbiol Spectr, 2022, 10(1):e0134221. |
[28] | FRAPPIER L. Epstein-Barr virus is an agent of genomic instability[J]. Nature, 2023, 616(7957):441-442. |
[29] | UDDIN M K, WATANABE T, ARATA M, et al. Epstein-Barr virus BBLF1 mediates secretory vesicle transport to facilitate mature virion release[J]. J Virol, 2023, 97(6):e0043723. |
[30] |
KUSANO S, IKEDA M. Interaction of phospholipid scramblase 1 with the Epstein-Barr virus protein BZLF1 represses BZLF1-mediated lytic gene transcription[J]. J Biol Chem, 2019, 294(41):15104-15116.
DOI PMID |
[31] | World Health Organization. HIV[EB/OL]. (2023-12-31)[2024-09-26]. https://www.who.int/data/gho/data/themes/hiv-aids. |
[32] | The Joint United Nations Programme on HIV/AIDS. Global HIV & AIDS statistics-fact sheet[EB/OL]. (2023-12-31)[2024-03-31]. https://www.unaids.org/en/resources/fact-sheet. |
[33] |
DHARAN A, BACHMANN N, TALLEY S, et al. Nuclear pore blockade reveals that HIV-1 completes reverse transcription and uncoating in the nucleus[J]. Nat Microbiol, 2020, 5(9):1088-1095.
DOI PMID |
[34] |
MÜLLER T G, ZILA V, MÜLLER B, et al. Nuclear capsid uncoating and reverse transcription of HIV-1[J]. Annu Rev Virol, 2022, 9(1):261-284.
DOI PMID |
[35] | JÄGER N, PÖHLMANN S, RODNINA M V, et al. Interferon-stimulated genes that target retrovirus translation[J]. Viruses, 2024, 16(6):933. |
[36] | CAFARO A, SCHIETROMA I, SERNICOLA L, et al. Role of HIV-1 Tat protein interactions with host receptors in HIV infection and pathogenesis[J]. Int J Mol Sci, 2024, 25(3):1704. |
[37] | MOUSSEAU G, ANEJA R, CLEMENTZ M A, et al. Resistance to the Tat inhibitor didehydro-cortistatin A is mediated by heightened basal HIV-1 transcription[J]. mBio, 2019, 10(4):e01750-18. |
[38] | KUSANO S, EIZURU Y. Interaction of the phospholipid scramblase 1 with HIV-1 Tat results in the repression of Tat-dependent transcription[J]. Biochem Biophys Res Commun, 2013, 433(4):438-444. |
[39] | SPECTOR C, MELE A R, WIGDAHL B, et al. Genetic variation and function of the HIV-1 Tat protein[J]. Med Microbiol Immunol, 2019, 208(2):131-169. |
[40] | VAN RYK D, VIMONPATRANON S, HIATT J, et al. The V2 domain of HIV gp120 mimics an interaction between CD4 and integrin α4β7[J]. PLoS Pathog, 2023, 19(12):e1011860. |
[41] | CHEN Q, ZHAO Y, ZHANG Y, et al. HIV associated cell death:peptide-induced apoptosis restricts viral transmission[J]. Front Immunol, 2023, 14:1096759. |
[42] | SPONAUGLE A, WEIDEMAN A M K, RANEK J, et al. Dominant CD4+ T cell receptors remain stable throughout antiretroviral therapy-mediated immune restoration in people with HIV[J]. Cell Rep Med, 2023, 4(11):101268. |
[43] | PY B, BASMACIOGULLARI S, BOUCHET J, et al. The phospholipid scramblases 1 and 4 are cellular receptors for the secretory leukocyte protease inhibitor and interact with CD4 at the plasma membrane[J]. PLoS One, 2009, 4(3):e5006. |
[44] |
MORRISON C S, CHEN P L, YAMAMOTO H, et al. Concomitant imbalances of systemic and mucosal immunity increase HIV acquisition risk[J]. J Acquir Immune Defic Syndr, 2020, 84(1):85-91.
DOI PMID |
[45] | GOVENDER Y, MORRISON C S, CHEN P L, et al. Cervical and systemic innate immunity predictors of HIV risk linked to genital herpes acquisition and time from HSV-2 seroconversion[J]. Sex Transm Infect, 2023, 99(5):311-316. |
[46] | LEGRAND N, MCGREGOR S, BULL R, et al. Clinical and public health implications of human T-lymphotropic virus type 1 infection[J]. Clin Microbiol Rev, 2022, 35(2):e0007821. |
[47] | KALEMERA M D, MAHER A K, DOMINGUEZ-VILLAR M, et al. Cell culture evaluation hints widely available HIV drugs are primed for success if repurposed for HTLV-1 prevention[J]. Pharmaceuticals(Basel), 2024, 17(6):730. |
[48] |
HLEIHEL R, SKAYNEH H, DE THÉ H, et al. Primary cells from patients with adult T cell leukemia/lymphoma depend on HTLV-1 Tax expression for NF-κB activation and survival[J]. Blood Cancer J, 2023, 13(1):67.
DOI PMID |
[49] | NOZUMA S, KUBOTA R, JACOBSON S. Human T-lymphotropic virus type 1(HTLV-1)and cellular immune response in HTLV-1-associated myelopathy/tropical spastic paraparesis[J]. J Neurovirol, 2020, 26(5):652-663. |
[50] |
KUSANO S, EIZURU Y. Human phospholipid scramblase 1 interacts with and regulates transactivation of HTLV-1 tax[J]. Virology, 2012, 432(2):343-352.
DOI PMID |
[51] | CARCONE A, JOURNO C, DUTARTRE H. Is the HTLV-1 retrovirus targeted by host restriction factors?[J]. Viruses, 2022, 14(8):1611. |
[1] | 王雅文, 张盈莹, 牛文彦. 糖化血红蛋白对2型糖尿病患者尿路感染病原菌的影响[J]. 检验医学, 2024, 39(9): 895-899. |
[2] | 王娟, 赵宏伟. 山西长治地区女性HPV感染现状以及不同方法筛查宫颈癌的效能[J]. 检验医学, 2024, 39(9): 908-912. |
[3] | 蔡旻, 张慧. 重症监护病房患者碳青霉烯耐药肠杆菌目细菌感染研究进展[J]. 检验医学, 2024, 39(9): 913-918. |
[4] | 黄琳玲, 许美蓉, 沈晓雯, 顾玲莉, 沈红梅. 耐碳青霉烯肠杆菌科细菌血流感染患者外周血淋巴细胞自噬特征及其意义[J]. 检验医学, 2024, 39(8): 759-763. |
[5] | 任继轩, 胡朝晖, 陈嘉昌, 王维世, 刘向东, 刘鑫源, 李颖. 基于探针熔解曲线分析的多重PCR同步鉴定6种腹泻病原菌[J]. 检验医学, 2024, 39(8): 793-799. |
[6] | 胡亮, 张泽, 窦馨, 李明超, 周冰鹤, 常东. 上海市浦东地区109 664例人乳头瘤病毒基因分型结果分析[J]. 检验医学, 2024, 39(8): 810-814. |
[7] | 修宁宁, 邓沛汶, 潘俊均, 卢玉玲. 紫红红球菌致血流感染1例报道[J]. 检验医学, 2024, 39(8): 820-822. |
[8] | 时宇, 李少增, 卢晶, 张康, 何丽婧, 宋娜娜, 吴禹政, 熊瑜琳. 糖尿病足截肢术后并发肺部耳念珠菌感染1例报道[J]. 检验医学, 2024, 39(7): 715-720. |
[9] | 闫江泓, 王乐, 马琳, 杨硕, 郭巍巍, 赵梦川, 刘泽昊, 翟小颖. EB病毒感染急性淋巴细胞白血病患儿临床特征分析[J]. 检验医学, 2024, 39(6): 583-586. |
[10] | 张娜, 李静, 闫晓静, 张岚, 刘伟霄. 病毒性脑炎患儿脑脊液IP-10、MCP-1检测的临床意义[J]. 检验医学, 2024, 39(5): 454-457. |
[11] | 王绪琴, 林倩茹, 冯琬清, 董原, 郁晓磊, 刘长河, 宁镇, 沈鑫, 潘启超, 林怡. HIV-1整合酶基因序列分析方法验证[J]. 检验医学, 2024, 39(4): 369-375. |
[12] | 俞佳慧, 周麟, 郭钢, 周建美. 血清同型半胱氨酸、胱抑素C水平与单纯疱疹病毒性脑炎患者认知障碍的关系[J]. 检验医学, 2024, 39(4): 393-399. |
[13] | 闫亚芳, 周子博, 郑岩, 宋燕华. 宏基因组高通量测序诊断假体周围关节感染Meta分析[J]. 检验医学, 2024, 39(4): 400-403. |
[14] | 孙康德, 虞中敏, 严育忠. 不同感染指标在细菌性血流感染早期诊断和预后评估中的价值[J]. 检验医学, 2024, 39(3): 222-226. |
[15] | 杨静, 刘华朋, 柳旎. 血清MyD88和TRAF-6联合检测在儿童重度急性呼吸道感染诊断和预后评估中的价值[J]. 检验医学, 2024, 39(3): 237-242. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||