[1] |
AKGÜN D, PERKA C, TRAMPUZ A, et al. Outcome of hip and knee periprosthetic joint infections caused by pathogens resistant to biofilm-active antibiotics:results from a prospective cohort study[J]. Arch Orthop Trauma Surg, 2018, 138(5):635-642.
DOI
|
[2] |
LENGUERRAND E, WHITEHOUSE M R, BESWICK A D, et al. Risk factors associated with revision for prosthetic joint infection after hip replacement:a prospective observational cohort study[J]. Lancet Infect Dis, 2018, 18(9):1004-1014.
DOI
URL
|
[3] |
YAN Q, KARAU M J, GREENWOOD-QUAINTANCE K E, et al. Comparison of diagnostic accuracy of periprosthetic tissue culture in blood culture bottles to that of prosthesis sonication fluid culture for diagnosis of prosthetic joint infection(PJI)by use of bayesian latent class modeling and idsa PJI criteria for classification[J]. J Clin Microbiol, 2018, 56(6):e00319.
|
[4] |
SIMNER P J, MILLER S, CARROLL K C. Understanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseases[J]. Clin Infect Dis, 2018, 66(5):778-788.
DOI
PMID
|
[5] |
BESSER J, CARLETON H A, GERNER-SMIDT P, et al. Next-generation sequencing technologies and their application to the study and control of bacterial infections[J]. Clin Microbiol Infect, 2017, 24(4):335-341.
DOI
URL
|
[6] |
WILSON M R, NACCACHE S N, SAMAYOA E, et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing[J]. N Engl J Med, 2014, 370(25):2408-2417.
DOI
URL
|
[7] |
DUAN H, LI X, MEI A, et al. The diagnostic value of metagenomic nextgeneration sequencing in infectious diseases[J]. BMC Infec Dis, 2021, 21(1):62.
DOI
|
[8] |
PARVIZI J, ZMISTOWSKI B, BERBARI E F, et al. New definition for peri-prosthetic joint infection:from the workgroup of the musculoskeletal infection society[J]. Clin Orthop Relat Res, 2011, 469(11):2992-2994.
DOI
URL
|
[9] |
PARVIZI J, TAN T L, GOSWAMI K, et al. The 2018 definition of periprosthetic hip and knee infection:an evidence based and validated criteria[J]. J Arthroplasty, 2018, 33(5):1309-1314.
DOI
URL
|
[10] |
邬兰, 张永, 曾宪涛. QUADAS-2在诊断准确性研究的质量评价工具中的应用[J]. 湖北医药学院学报, 2013, 32(3):201-208.
|
[11] |
董文超, 昝强, 马建兵, 等. 宏基因组二代测序技术在假体周围感染中寻找病原菌的应用和价值[J]. 实用骨科杂志, 2022, 28(1):30-35.
|
[12] |
于洋, 张少坤, 陆世涛, 等. 宏基因组二代测序技术在假体周围感染病原诊断中的应用[J]. 中华骨科杂志, 2021, 41(5):280-288.
|
[13] |
黄子达, 张翀景, 李文波, 等. 宏基因组二代测序技术检测病原菌在诊断假体周围感染中的作用[J]. 中华骨科杂志, 2019, 39(15):944-953.
|
[14] |
HUANG Z, LI W, LEE G C, et al. Metagenomic next-generation sequencing of synovial fluid demonstrates high accuracy in prosthetic joint infection diagnostics:mNGS for diagnosing PJI[J]. Bone Joint Res, 2020, 9(7):440-449.
DOI
URL
|
[15] |
HE R, WANG Q, WANG J, et al. Better choice of the type of specimen used for untargeted metagenomic sequencing in the diagnosis of periprosthetic joint infections[J]. Bone Joint J, 2021, 103-B(5):923-930.
DOI
PMID
|
[16] |
WANG C X, HUANG Z, FANG X, et al. Comparison of broad-range polymerase chain reaction and metagenomic next-generation sequencing for the diagnosis of prosthetic joint infection[J]. Int J Infect Dis, 2020,95:8-12.
|
[17] |
CAI Y, FANG X, CHEN Y, et al. Metagenomic next generation sequencing improves diagnosis of prosthetic joint infection by detecting the presence of bacteria in periprosthetic tissues[J]. Int J Infect Dis, 2020,96:573-578.
|
[18] |
FANG X, CAI Y, SHI T, et al. Detecting the presence of bacteria in low-volume preoperative aspirated synovial fluid by metagenomic next-generation sequencing[J]. Int J Infect Dis, 2020,99:108-116.
|
[19] |
IVY M I, THOENDEL M J, JERALDO P R, et al. Direct detection and identification of prosthetic joint infection pathogens in synovial fluid by metagenomic shotgun sequencing[J]. J Clin Microbiol, 2018, 56(9):e00402-e00418.
|
[20] |
HUANG Z D, ZHANG Z J, YANG B, et al. Pathogenic detection by metagenomic next-generation sequencing in osteoarticular infections[J]. Front Cell Infect Microbiol, 2020, 471(10):1-10.
|