[1]Pui CH, Campana D, Evans WE. Childhood acute lymphoblastic leukemia-current status and future perspectives[J]. Lancet Oncol,2001,2(10): 597-607.[2]Campana D. Minimal residual disease in acute lymphoblastic leukemia[J]. Hematology Am Soc Hematol Educ Program,2010,2010: 7-12.[3]Irving J, Jesson J, Virgo P, et al. Establishment and validation of a standard protocol for the detection of minimal residual disease in B lineage childhood acute lymphoblastic leukemia by flow cytometryin a multi-center setting[J]. Haematologica,2009,94(6): 870-874.[4]Brüggemann M, Schrauder A, Raff T, et al. Standardized MRD quantification in European ALL trials: proceedings of the Second International Symposium on MRD assessment in Kiel, Germany, 18-20 September 2008[J]. Leukemia,2010,24(3): 521-535.[5]Pui CH, Campana D, Pei D, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation[J]. N Engl J Med,2009,360(26): 2730-2741.[6]Van der Velden VH, van Dongen JJ. MRD detection in acute lymphoblastic leukemia patients using Ig/TCR gene rearrangements as targets for real-time quantitative PCR[J]. Methods Mol Biol,2009,538: 115-150.[7]Coustan-Smith E, Campana D. Immunologic minimal residual disease detection in acute lymphoblastic leukemia: a comparative approach to molecular testing[J]. Best Pract Res Clin Haematol,2010,23(3): 347-358.[8]Van der Velden VH, Cazzaniga G, Schrauder A, et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data[J]. Leukemia,2007,21(4): 604-611.[9]Van der Velden VH, Hochhaus A, Cazzaniga G, et al. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects[J]. Leukemia,2003,17(6): 1013-1034.[10]Flohr T, Schrauder A, Cazzaniga G, et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia[J]. Leukemia,2008,22(4): 771-782.[11]Stow P, Key L, Chen X, et al. Clinical significance of low levels of minimal residual disease at the end of remission induction therapy in childhood acute lymphoblastic leukemia[J]. Blood,2010,115(23): 4657-4663.[12]Waanders E, van der Velden VH, van der Schoot CE, et al. Integrated use of minimal residual disease classification and IKZF1 alteration status accurately predicts 79% of relapses in pediatric acute lymphoblastic leukemia[J]. Leukemia,2011,25(2): 254-258.[13]Szczepaski T, Pongers-Willemse MJ, Langerak AW, et al. Unusual immunoglobulin and T-cell receptor gene rearrangement patterns in acute lymphoblastic leukemias[J]. Curr Top Microbiol Immunol,1999,246: 205-213.[14]Campana D. Minimal residual disease monitoring in childhood acute lymphoblastic leukemia[J]. Curr Opin Hematol,2012,19(4): 313-318.[15]Boyd SD, Marshall EL, Merker JD, et al. Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing[J]. Sci Transl Med,2009,1(12): 12-23.[16]Faham M, Willis T, Moorhead M, et al. Highly sensitive detection of minimal residual disease in acute lymphoblastic leukemia using next-generation sequencing of immunoglobulin heavy chain variable region[J]. Blood(ASH Annual Meeting Abstracts),2011,118: Abstract 2540.[17]Gabert J, Beillard E, van der Velden VH, et al. Standardization and quality control studies of ′real-time′quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia-a Europe Against Cancer program[J]. Leukemia,2003,17(12): 2318-2357.[18]Mullighan CG, Su X, Zhang J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia[J]. N Engl J Med,2009,360(5): 470-480.[19]Mullighan CG, Collins-Underwood JR, Phillips LA, et al. Rearrangement of CRLF2 in B-progenitor-and Down syndrome-associated acute lymphoblastic leukemia[J]. Nat Genet,2009,41(11): 1243-1246.[20]Yoda A, Yoda Y, Chiaretti S, et al. Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia[J]. Proc Natl Acad Sci USA,2010,107(1): 252-257.[21]Hong D, Gupta R, Ancliff P, et al. Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia[J]. Science,2008,319(5861):336-339.[22]Campana D. Minimal residual disease in acute lymphoblastic leukemia[J]. Semin Hematol,2009,46(1):100-106.[23]Coustan-Smith E, Song G, Clark C, et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia[J]. Blood,2011,117(23): 6267-6276.[24]Coustan-Smith E, Sancho J, Hancock ML, et al. Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia[J]. Blood,2002,100(7): 2399-2402.[25]Coustan-Smith E, Sandlund JT, Perkins SL, et al. Minimal disseminated disease in childhood T-cell lymphoblastic lymphoma: a report from the children′s oncology group[J]. J Clin Oncol,2009,27(21): 3533-3539.[26]Porwit-MacDonald A, Bjrklund E, Lucio P, et al. BIOMED-1 concerted action report: flow cytometric characterization of CD7+ cell subsets in normal bone marrow as a basis for the diagnosis and follow-up of T cell acute lymphoblastic leukemia (T-ALL)[J]. Leukemia,2000,14(5): 816-825.[27]Campana D. Detection of minimal residual disease in acute lymphoblastic leukemia[J]. Atlas Genet Cytogenet Oncol Haematol,2010,14(6): 1081-1093.[28]Campana D, Coustan-Smith E. Minimal residual disease studies by flow cytometry in acute leukemia[J]. Acta Haematol, 2004, 112(1-2): 8-15.[29]Lavabre-Bertrand T, Janossy G, Ivory K, et al. Leukemia-associated changes identified by quantitative flow cytometry: I. CD10 expression[J]. Cytometry,1994,18(4):209-217.[30]Behm FG, Raimondi SC, Schell MJ, et al. Lack of CD45 antigen on blast cells in childhood acute lymphoblastic leukemia is associated with chromosomal hyperdiploidy and other favorable prognostic features[J]. Blood,1992,79(4):1011-1016.[31]Campana D, Coustan-Smith E. Detection of minimal residual disease in acute leukemia by flow cytometry[J]. Cytometry,1999,38(4): 139-152.[32]Mori T, Sugita K, Suzuki T, et al. A novel monoclonal antibody, KOR-SA3544 which reacts to Philadelphia chromosome-positive acute lymphoblastic leukemia cells with high sensitivity[J]. Leukemia,1995,9(7):1233-1239.[33]Chen JS, Coustan-Smith E, Suzuki T, et al. Identification of novel markers for monitoring minimal residual disease in acute lymphoblastic leukemia[J]. Blood,2001,97(7): 2115-2120.[34]Solly F, Angelot F, Garand R, et al. CD304 is preferentially expressed on a subset of B-lineage acute lymphoblastic leukemia and represents a novel marker for minimal residual disease detection by flow cytometry[J]. Cytometry A,2012,81(1): 17-24.[35]Djokic M, Bjrklund E, Blennow E, et al. Overexpression of CD123 correlates with the hyperdiploid genotype in acute lymphoblastic leukemia[J]. Haematologica,2009,94(7): 1016-1019.[36]Muzzafar T, Medeiros LJ, Wang SA, et al. Aberrant underexpression of CD81 in precursor B-cell acute lymphoblastic leukemia: utility in detection of minimal residual disease by flow cytometry[J]. Am J Clin Pathol,2009,132(5): 692-698.[37]DiGiuseppe JA, Fuller SG, Borowitz MJ. Overexpression of CD49f in precursor B-cell acute lymphoblastic leukemia: potential usefulness in minimal residual disease detection[J]. Cytometry B Clin Cytom,2009,76(2): 150-155.[38]Rhein P, Mitlohner R, Basso G, et al. CD11b is a therapy resistance-and minimal residual disease-specific marker in precursor B-cell acute lymphoblastic leukemia[J]. Blood,2010,115(18): 3763-3771.[39]Fier K, Sieger T, Schumich A, et al. Detection and monitoring of normal and leukemic cell populations with hierarchical clustering of flow cytometry data[J]. Cytometry A,2012,81(1): 25-34.[40]Dworzak MN, Gaipa G, Schumich A, et al. Modulation of antigen expression in B-cell precursor acute lymphoblastic leukemia during induction therapy is partly transient: evidence for a drug-induced regulatory phenomenon. Results of the AIEOP-BFM-ALL-FLOW-MRD-Study Group[J]. Cytometry B Clin Cytom,2010,78(3): 147-153.[41]Liu X, Hsieh HB, Campana D, et al. A new method for high speed, sensitive detection of minimal residual disease[J]. Cytometry A,2012,81(2): 169-175.[42]Gaipa G, Basso G, Maglia O, et al. Drug-induced immunophenotypic modulation in childhood ALL: implications for minimal residual disease detection[J]. Leukemia, 2005,19(1): 49-56.[43]Coustan-Smith E, Sancho J, Behm FG, et al. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia[J]. Blood,2002,100(1): 52-58.[44]Borowitz MJ, Devidas M, Hunger SP, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children′s Oncology Group study[J]. Blood,2008,111(12): 5477-5485.[45]Van Dongen JJ, Seriu T, Panzer-Grümayer ER, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood[J].Lancet,1998,352(9142): 1731-1738.[46]Zhou J, Goldwasser MA, Li A, et al. Quantitative analysis of minimal residual disease predicts relapse in children with B-lineage acute lymphoblastic leukemia in DFCI ALL Consortium Protocol 95-01[J]. Blood,2007,110(5): 1607-1611.[47]Campana D. Should minimal residual disease monitoring in acute lymphoblastic leukemia be standard of care[J] Curr Hematol Malig Rep,2012,7(2): 170-177.[48]Topp MS, Kufer P, Gkbuget N, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival[J]. J Clin Oncol,2011,29(18): 2493-2498. |