检验医学 ›› 2025, Vol. 40 ›› Issue (10): 1004-1009.DOI: 10.3969/j.issn.1673-8640.2025.10.013

• 论著 • 上一篇    下一篇

机器学习算法预测急性缺血性脑卒中患者预后效果评价

李明超1, 沈通1, 周冰鹤1, 窦馨1, 胡亮1, 常东1(), 张泽2()   

  1. 1 上海市浦东医院 复旦大学附属浦东医院检验科上海 201399
    2 复旦大学张江科技研究院上海 201203
  • 收稿日期:2024-07-18 修回日期:2024-12-09 出版日期:2025-10-30 发布日期:2025-11-07
  • 通讯作者: 张 泽,E-mail:763011176@qq.com;常 东,E-mail:dongchang1969@163.com
  • 作者简介:李明超,男,1995年生,学士,主要从事检验医学和医学信息学研究。
  • 基金资助:
    国家自然科学基金项目(82204098);上海市浦东新区卫生系统优秀青年医学人才项目(PWRq2024-06);复旦张江临床医学创新基金项目(KP0202122);上海市浦东新区重点学科基金项目(PWZxk2022-08);上海市浦东医院院级引进人才科研启动金项目(YJYJRC202115);复旦大学附属浦东医院重点学科基金项目(Yjzdxk2025-06)

Evaluation of prognosis prediction effects in acute ischemic stroke patients based on machine learning algorithms

LI Mingchao1, SHEN Tong1, ZHOU Binghe1, DOU Xin1, HU Liang1, CHANG Dong1(), ZHANG Ze2()   

  1. 1 Department of Clinical LaboratoryShanghai Pudong Hospital,Fudan University Pudong Medical CenterShanghai 201399, China
    2 Fudan Zhangjiang InstituteShanghai 201203, China
  • Received:2024-07-18 Revised:2024-12-09 Online:2025-10-30 Published:2025-11-07

摘要:

目的 探讨基于随机森林算法、极限梯度提升算法、LightGBM算法和Logistic回归分析建立的模型在预测急性缺血性脑卒中(AIS)患者预后的价值。方法 收集2022年2月—2024年6月复旦大学附属浦东医院670例AIS患者人口统计学和临床诊疗数据。按照7∶3的比例将670例患者随机分为训练集(469例)和测试集(201例)。分别采用Logistic回归分析和随机森林算法、极限梯度提升算法、LightGBM算法建立模型并预测AIS患者预后。基于受试者工作特征(ROC)曲线、准确率、敏感性、特异性、F1分数、阳性预测值、阴性预测值评估4种算法的预测效能。结果 Logistic回归分析和随机森林算法、极限梯度提升算法、LightGBM算法预测AIS患者预后的曲线下面积(AUC)分别为0.908、0.915、0.908、0.896;4种算法中,随机森林算法的准确率、F1分数最高,Logistic回归分析的特异性和阳性预测值最高,LightGBM算法的阴性预测值最优,而极限梯度提升算法各评价指标均表现欠佳。结论 基于机器学习算法预测AIS患者预后能够早期识别患者复发风险,但应选择合适的机器学习模型。

关键词: 机器学习, 急性缺血性脑卒中, 预后评价模型

Abstract:

Objective To evaluate the roles of random forest,extreme gradient boosting,LightGBM machine learning algorithms and Logistic regression analysis in predicting the prognosis of patients with acute ischemic stroke(AIS). Methods The demographic and clinical data of 670 AIS patients from Fudan University Pudong Medical Center from February 2022 to June 2024 were collected. The 670 patients were randomly divided into a training set(469 cases) and a test set(201 cases) at a ratio of 7∶3. Totally,4 prediction models for AIS prognosis were established using Logistic regression analysis,random forest,extreme gradient boosting and LightGBM machine learning algorithm. The prognosis predictive effects were evaluated based on receiver operating characteristic(ROC) curve,accuracy,sensitivity,specificity,F1 score,positive predictive value and negative predictive value. Results The areas under curves(AUC) of Logistic regression analysis,random forest,extreme gradient boosting and LightGBM machine learning algorithms for predicting the prognosis of AIS patients were 0.908,0.915,0.908 and 0.896,respectively. Among the 4 algorithms,the random forest algorithm had the optimal accuracy and F1 score,Logistic regression analysis had the highest specificity and positive predictive value,and LightGBM machine learning algorithm had the optimal negative predictive value. The extreme gradient boosting algorithm performed poorly in all evaluation indicators. Conclusions The AIS prognosis prediction algorithms constructed based on machine learning can early identify the prognosis of patients,but an appropriate machine learning model should be selected.

Key words: Machine learning, Acute ischemic stroke, Prognosis evaluation model

中图分类号: