检验医学 ›› 2025, Vol. 40 ›› Issue (6): 534-539.DOI: 10.3969/j.issn.1673-8640.2025.06.003

• 论著 • 上一篇    下一篇

基于机器学习算法建立神经母细胞瘤骨转移风险评估模型

王旭梅1, 徐冬青2, 高莉梅1, 章黎华1, 姜文理1, 王维维1, 马娟1, 沈立松1()   

  1. 1.上海交通大学医学院附属新华医院检验医学科,上海 200092
    2.上海交通大学医学院附属新华医院儿童血液肿瘤内科,上海 200092
  • 收稿日期:2024-11-18 修回日期:2025-01-14 出版日期:2025-06-30 发布日期:2025-07-01
  • 通讯作者: 沈立松
  • 作者简介:沈立松,E-mail:lisongshen@hotmail.com
    王旭梅,女,1992年生,硕士,检验医师,主要从事神经母细胞瘤相关的临床研究。
  • 基金资助:
    国家自然科学基金青年基金项目(82203376);上海市高等教育学会2024年度规划课题(2QYB4058)

Construction of a machine learning-based model for predicting the risk of neuroblastoma bone metastasis

WANG Xumei1, XU Dongqing2, GAO Limei1, ZHANG Lihua1, JIANG Wenli1, WANG Weiwei1, MA Juan1, SHEN Lisong1()   

  1. 1. Department of Clinical Laboratory,Xinhua Hospital,Shanghai Jiao Tong University School of Medicine,Shanghai 200092,China
    2. Pediatric Hematology and Oncology,Xinhua Hospital,Shanghai Jiao Tong University School of Medicine,Shanghai 200092,China
  • Received:2024-11-18 Revised:2025-01-14 Online:2025-06-30 Published:2025-07-01
  • Contact: SHEN Lisong

摘要:

目的 通过机器学习算法建立神经母细胞瘤(NB)骨转移的风险评估模型,辅助临床进行疾病诊疗。方法 选取2019年1月—2024年5月上海交通大学医学院附属新华医院初次诊断为NB的患儿138例,其中有46例发生骨转移。将所有患儿按7∶3的比例随机分为训练集(97例)和验证集(41例)。收集所有NB患儿首次入院时的临床资料和实验室检查结果。采用LASSO回归分析进行变量筛选,采用9种机器学习算法建立判断NB骨转移风险的模型,采用受试者工作特征(ROC)曲线评估各个模型的诊断效能,根据曲线下面积(AUC)筛选出最优模型,并在验证集中评估其效能。结果 采用LASSO回归分析从40个变量中筛选出9个变量[肿瘤骨髓转移状态、治疗前危险度分级、Myc基因扩增状态、骨髓原始细胞百分比、骨髓巨核细胞计数、血红蛋白、乳酸脱氢酶(LDH)、CD8+T细胞百分比、CD8+T细胞绝对数]。在训练集中,采用9种算法基于筛选出的9个变量分别构建相应的模型。9个模型中,极端随机树(ExtraTrees)模型判断NB患儿发生骨转移的效能最高(训练集和验证集的AUC分别为1.000和0.927)。ExtraTrees模型在训练集上的预测结果准确度为100%;在验证集上,预测结果准确度为 90.2%。结论 基于机器学习算法构建ExtraTrees模型在NB骨转移风险评估中有较高的应用潜力。

关键词: 机器学习算法, 预测模型, 神经母细胞瘤, 骨转移

Abstract:

Objective To construct a risk prediction model for bone metastasis in neuroblastoma(NB) through machine learning algorithms,aimed at assisting clinical diagnosis and treatment. Methods Totally,138 patients with NB who were first diagnosed in Xinhua Hospital of Shanghai Jiao Tong University School of Medicine from January 2019 to May 2024 were enrolled and randomly divided into training set(97 cases) and validation set(41 cases) in a 7∶3 ratio. The clinical data and laboratory determination results of all the NB patients at the first hospital admission were collected. LASSO regression analysis was used to screen variables. Nine machine learning algorithms were used to establish models for predicting the risk of NB bone metastasis. Receiver operating characteristic(ROC) curve was used to evaluate the diagnostic efficacy of each model. The optimal model was screened out based on the area under curve(AUC),and its efficacy was evaluated in the validation set. Results The variables screened by LASSO regression analysis included tumor bone marrow metastasis status,pretreatment risk classification of NB,Myc gene amplification status,bone marrow blast cell ratio,bone marrow megakaryocyte count,hemoglobin,lactate dehydrogenase(LDH),CD8+ T cell percentage and CD8+ T cell absolute value. The screened variables were included in 9 machine learning algorithms for training. The ExtraTrees model had optimal performance in predicting the bone metastasis risk of NB,with AUC of 1.000 and 0.927 in the training set and validation set. The ExtraTrees model achieved a 100% accuracy in prediction results in the training set,and a 90.2% accuracy in the validation set. Conclusions The construction of an ExtraTrees model based on machine learning algorithms has demonstrated significant potential for assessing the risk of bone metastasis in NB.

Key words: Neuroblastoma, Machine learning, Predictive model, Bone metastasis

中图分类号: