检验医学 ›› 2019, Vol. 34 ›› Issue (12): 1118-1123.DOI: 10.3969/j.issn.1673-8640.2019.12.013

• 临床应用研究?论著 • 上一篇    下一篇

机器学习在血细胞分析中智能筛查原始细胞的应用

王双, 陈思, 付阳, 毛志刚, 江虹   

  1. 四川大学华西医院实验医学科,四川 成都 610041
  • 收稿日期:2018-11-25 出版日期:2019-12-30 发布日期:2020-01-03
  • 作者简介:null

    作者简介:王双,女,1994年生,学士,技师,主要从事临床基础检验及血液学检验工作。

Role of machine learning in peripheral blood blast intelligent determination

WANG Shuang, CHEN Si, FU Yang, MAO Zhigang, JIANG Hong   

  1. Department of Clinical Laboratory,West China Hospital of Sichuan University,Chengdu 610041,Sichuan,China
  • Received:2018-11-25 Online:2019-12-30 Published:2020-01-03

摘要:

目的 利用计算机学习统计软件(SPSS 21.0)进行机器学习,建立原始细胞筛检模型。通过在智能筛查原始细胞方面的尝试,为血常规报告智能审核及实验室检验结果智能诊断奠定基础。方法 通过实验室信息系统(LIS)和医院信息系统(HIS)检索并统计四川大学华西医院行血细胞分析的门诊及住院患者6 173例。纳入64项血细胞指标,由计算机软件统计学习得出标本原始细胞检出P值,评价血细胞分析时原始细胞检出P值对原始细胞的筛查能力。结果 根据受试者工作特征(ROC)曲线选择出建模指标:血红蛋白(Hb)、红细胞比容(HCT)、淋巴细胞绝对值(LYMP#)、有核红细胞百分比(NRBC%)、淋巴细胞修正绝对值(LYMPH#)、淋巴细胞前向散射光强度分布宽度(LY-WZ)、幼稚粒细胞绝对值(IG#)、中性粒细胞前向散射光强度分布宽度(NE-WZ)、WDF通道白细胞计数(WBC-D)、白细胞(WBC)计数、WNR通道白细胞计数(WBC-N)、WDF通道有核细胞数(TNC-D)、有核细胞总数(TNC)、WNR通道有核细胞数(TNC-N)、中性粒细胞侧向散射光强度分布宽度(NE-WX)、单核细胞侧向荧光强度分布宽度(MO-WY)、中性粒细胞侧向荧光强度分布宽度(NE-WY)、单核细胞侧向散射光强度分布宽度(MO-WX)、有核红细胞绝对值(NRBC#)、单核细胞绝对值(MONO#)。建立的模型原始细胞检出P值为96.4%。用此模型对989例非住院患者测试标本进行盲法验证,预测敏感性为100.0%,特异性为53.2%。用此模型对493例正接受治疗的确诊血液病住院患者标本进行盲法验证,预测敏感性为68.1%,特异性为52.4%。结论 基于机器学习得出的原始细胞筛查模型对血细胞分析中智能筛查原始细胞具有一定价值,为血细胞检测智能化的实施及进一步研究提供了可借鉴的经验,但其对治疗中的血液病患者的筛检能力还需进一步提高,需建立更加优化的模型算法对原始细胞进行有效筛查。

关键词: 机器学习, 血细胞计数, 原始细胞

Abstract:

Objective Using computer learning software(SPSS 21.0),to establish a peripheral blood blast intelligent determination model,and to lay a foundation for the intelligent review of blood routine reports and the intelligent diagnosis of laboratory determination results. Methods A total of 6 173 outpatients and inpatients were enrolled,and their data were collected through laboratory information system(LIS) and hospital information system(HIS) of West China Hospital of Sichuan University. A total of 64 blood cell determination indexes were enrolled,and the P value of blast was obtained by computer statistical software. The screening performance was evaluated. Results The indexes,including hemoglobin(Hb),hematocrit(HCT),lymphocyte absolute value(LYMP#),nucleated red blood cell percentage(NRBC%),lymphocyte corrected absolute value(LYMPH#),forward scatter intensity distribution width of lymphocyte(LY-WZ),immature granulocyte absolute value(IG#),forward scatter intensity distribution width of neutrophil(NE-WZ),white blood ecell count in WDF channel(WBC-D),white blood cell(WBC) count,white blood cell in WNR channel(WBC-N),nucleated cell count in WDF channel(TNC-D),total nucleated cell(TNC) count,nucleated cell count in WNR channel(TNC-N),side scatter intensity distribution width of neutrophil(NE-WX),side fluorescence intensity distribution width of monocyte(MO-WY),side fluorescence intensity distribution width of neutrophil(NE-WY),side scatter intensity distribution width of monocyte(MO-WX),nucleated red blood cell absolute value(NRBC#) count and monocyte absolute value(MONO#),were included in the model. The P value of blast was 96.4%. In this model,989 cases of outpatients were verified by blind method,the predictive sensitivity was 100.0%,and the specificity was 53.2%. Furthermore,493 cases of inpatients were verified by blind method,the predictive sensitivity was 68.1%,and the specificity was 52.4%. Conclusions The model of peripheral blood blast intelligent determination based on machine learning plays a role in blood cell analysis,which provides experience for the application of artificial intelligence in intelligent diagnosis in the future. The model's ability for determining blood diseases under treatment needs to be improved,and the machine learning algorithm should be optimized for a better model for determining peripheral blood blast.

Key words: Machine learning, Blood cell count, Blast

中图分类号: