检验医学 ›› 2025, Vol. 40 ›› Issue (3): 264-270.DOI: 10.3969/j.issn.1673-8640.2025.03.011

• 论著 • 上一篇    下一篇

基于AI的PBRTQC智能监控平台在血清肿瘤标志物质量风险监控中的应用价值评价

于雪, 漆爱红, 李锦辉, 全智慧, 李奎, 裘宇容()   

  1. 广州华银医学检验中心,广东 广州 510000
  • 收稿日期:2024-10-29 修回日期:2025-01-10 出版日期:2025-03-30 发布日期:2025-04-10
  • 通讯作者: 裘宇容,E-mail: qiuyurong@huayinlab.com
  • 作者简介:于 雪,女,1993年生,博士,研究员,主要从事乳腺癌循环肿瘤细胞检测方法研究。
  • 基金资助:
    广东省重点研发计划项目(2020B0404010002);广州华银医学检验中心有限公司广州博士后创新实践基地基金项目

Application role of an AI-patient based real time quality control intelligent monitoring platform for risk quality management of serum tumor markers

YU Xue, QI Aihong, LI Jinhui, QUAN Zhihui, LI Kui, QIU Yurong()   

  1. Guangzhou Huayin Medical Laboratory Center,Guangzhou 510000,Guangdong,China
  • Received:2024-10-29 Revised:2025-01-10 Online:2025-03-30 Published:2025-04-10

摘要:

目的 探讨基于人工智能(AI)技术的患者数据实时质量控制(PBRTQC)智能监控平台在9种血清肿瘤标志物质量风险管理中的应用价值。方法 通过AI-PBRTQC智能监控平台自动收集2023年1月1日—12月31日广州华银医学检验中心106 443例9种血清肿瘤标志物检测样本的结果,并用AI-PBRTQC智能软件进行患者大数据的正态分布检验、参数设置、程序建立、性能验证、质控效能评价和实时运行。遵循基于AI算法的智能质控规则,评价AI-PBRTQC智能监控平台在血清肿瘤标志物检测质量风险监控中的应用价值。结果 通过AI-PBRTQC智能监控平台选出最优程序参数,患者数据指数加权移动平均法(EWMA)质控图在性能稳定时呈现正态分布,且趋势一致。在9种血清肿瘤标志物检测中,更换新批号校准品和使用新批次检测试剂引起检测系统正确度性能变化时,AI-PBRTQC智能监控平台可灵敏、及时、正确识别,并发出警告。甲胎蛋白(AFP)的最佳加权系数为0.03,其他8种血清肿瘤标志物的最佳加权系数均为0.02。1年内9个项目EWMA实际累积精密度(CV)均小于质量目标。AI-PBRTQC智能监控平台在9个项目中合计预警8次,均为真实报警。结论 AI-PBRTQC智能监控平台可实时监控血清肿瘤标志物检测质量风险,并精准识别系统误差。

关键词: 肿瘤标志物, 患者数据实时质量控制, 指数加权移动平均法, 智能质量风险监控, 人工智能

Abstract:

Objective To investigate the application role of an artificial intelliqence(AI)-patient based real time quality control(PBRTQC) intelligent monitoring platform for risk quality management of 9 serum tumor markers. Methods The AI-PBRTQC intelligent monitoring platform was used to automatically collect the determination results of 106 443 samples of 9 serum tumor markers from Guangzhou Huayin Medical Laboratory Center. from January 1,2023 to December 31,2023. The AI-PBRTQC intelligent software was used for the normal distribution test,parameter setting,program establishment,performance verification,quality control efficiency evaluation and real-time operation of patient big data. According to the intelligent quality control rules based on AI algorithm,the application role of AI-PBRTQC intelligent monitoring platform for serum tumor marker determination quality risk monitoring was evaluated. Results The AI-PBRTQC intelligent monitoring platform selected the optimal program parameters,the patient data exponential weighted moving average(EWMA) quality control chart showed a normal distribution when the performance was stable,and the trend was consistent. In the determination of 9 serum tumor markers,AI-PBRTQC intelligent monitoring platform can sensitively,timely and correctly identify and issue warnings when changing the new batch of detemination products and using new batch of detection reagents cause changes in the accuracy performance of determination system. The optimal weighting coefficient of alpha-fetoprotein(AFP) was 0.03,and the optimal weighting coefficient of the other 8 serum tumor markers was 0.02. The actual cumulative precision(CV) of EWMA for 9 items in 1 year was all lower than the quality target. The AI-PBRTQC intelligent monitoring platform gave 8 warnings in 9 items,all of which were true alarms. Conclusions AI-PBRTQC intelligent monitoring platform can monitor the quality risk of serum tumor marker determinations in real time and accurately identify systemic errors.

Key words: Tumor marker, Patient based real time quality control, Exponential weighted moving average, Intelligent quality risk monitoring, Artificial intelligence

中图分类号: