[1] |
CHUANG J P, TSAI H L, CHEN P J, et al. Comprehensive review of biomarkers for the treatment of locally advanced colon cancer[J]. Cells, 2022, 11(23):3744.
|
[2] |
MAES-CARBALLO M, GARCÍA-GARCÍA M, MARTÍN-DÍAZ M, et al. A comprehensive systematic review of colorectal cancer screening clinical practices guidelines and consensus statements[J]. Br J Cancer, 2023, 128(6):946-957.
|
[3] |
DING Q, KONG X, ZHONG W, et al. Fecal biomarkers:Non-invasive diagnosis of colorectal cancer[J]. Front Oncol, 2022, 12:971930.
|
[4] |
YUAN R Q, ZHAO H, WANG Y, et al. SEPTIN9-SDC2-VIM methylation signature as a biomarker for the early diagnosis of colorectal cancer[J]. Am J Cancer Res, 2022, 12(7):3128-3140.
|
[5] |
CAO H, ZHU L, LI L, et al. Serum CA724 has no diagnostic value for gastrointestinal tumors[J]. Clin Exp Med, 2023, 23(6):2433-2442.
DOI
PMID
|
[6] |
PAKU M, UEMURA M, KITAKAZE M, et al. Clinical significance of preoperative and postoperative serum CEA and carbohydrate antigen 19-9 levels in patients undergoing curative resection of locally recurrent rectal cancer[J]. Dis Colon Rectum, 2023, 66(3):392-400.
|
[7] |
LUO H, SHEN K, LI B, et al. Clinical significance and diagnostic value of serum NSE,CEA,CA19-9,CA125 and CA242 levels in colorectal cancer[J]. Oncol Lett, 2020, 20(1):742-750.
|
[8] |
KOPPAD S, BASAVA A, NASH K, et al. Machine learning based identification of colon cancer candidate diagnostics genes[J]. Biology, 2022, 11(3):365.
|
[9] |
SKREDE O J, DE RAEDT S, KLEPPE A, et al. Deep learning for prediction of colorectal cancer outcome:a discovery and validation study[J]. Lancet, 2020, 395(10221):350-360.
|
[10] |
KAVITHA M S, GANGADARAN P, JACKSON A, et al. Deep neural network models for colon cancer screening[J]. Cancers, 2022, 14(15):3707.
|
[11] |
WANF F, CHEN G, ZHANG Z, et al. The Chinese Society of Clinical Oncology(CSCO):clinical guidelines for the diagnosis and treatment of colorectal cancer,2024 update[J]. Cancer Commun(Lond), 2024:1-28.
|
[12] |
LADABAUM U, MANNALITHARA A, WENG Y, et al. Comparative effectiveness and cost-effectiveness of colorectal cancer screening with blood-based biomarkers(liquid biopsy)vs fecal tests or colonoscopy[J]. Gastroenterology, 2024, 167(2):378-391.
|
[13] |
HANNA M, DEY N, GRADY W M. Emerging tests for noninvasive colorectal cancer screening[J]. Clin Gastroenterol Hepatol, 2023, 21(3):604-616.
|
[14] |
LI Y J, WANG X, WU Y J, et al. Access to colorectal cancer screening in populations in China,2020:a coverage-focused synthesis analysis[J]. Int J Cancer, 2024, 155(3):558-568.
|
[15] |
KE X, LIU W, SHEN L, et al. Early screening of colorectal precancerous lesions based on combined measurement of multiple serum tumor markers using artificial neural network analysis[J]. Biosensors(Basel), 2023, 13(7):685.
|
[16] |
KE X, CAI X, BIAN B, et al. Predicting early gastric cancer risk using machine learning:a population-based retrospective study[J]. Digit health, 2024, 10:20552076241240905.
|
[17] |
中华医学会检验医学分会分子诊断学组. 早期结直肠癌和癌前病变实验诊断技术中国专家共识[J]. 中华检验医学杂志, 2021, 44(5):372-380.
|
[18] |
LIU S, XU M, QIAO X, et al. Prediction of serosal invasion in gastric cancer:development and validation of multivariate models integrating preoperative clinicopathological features and radiographic findings based on late arterial phase CT images[J]. BMC Cancer, 2021, 21(1):1038.
|
[19] |
GAWEL S H, LUCHT M, GOMER H, et al. Evaluation of algorithm development approaches:development of biomarker panels for early detection of colorectal lesions[J]. Clin Chim Acta, 2019, 498:108-115.
|
[20] |
QIN Y, HUO M, LIU X, et al. Biomarkers and computational models for predicting efficacy to tumor ICI immunotherapy[J]. Front Immunol, 2024, 15:1368749.
|
[21] |
NOVIELLI P, ROMANO D, MAGARELLI M, et al. Explainable artificial intelligence for microbiome data analysis in colorectal cancer biomarker identification[J]. Front Microbiol, 2024, 15:1348974.
|
[22] |
LUO T, CHEN X, PAN W, et al. The sorafenib resistance-related gene signature predicts prognosis and indicates immune activity in hepatocellular carcinoma[J]. Cell Cycle, 2024, 23(2):150-168.
DOI
PMID
|
[23] |
LIN G, CHEN W, FAN Y, et al. Machine learning radiomics-based prediction of non-sentinel lymph node metastasis in chinese breast cancer patients with 1-2 positive sentinel lymph nodes:a multicenter study[J]. Acad Radiol, 2024, 31(8):3081-3095.
|