检验医学 ›› 2023, Vol. 38 ›› Issue (12): 1206-1210.DOI: 10.3969/j.issn.1673-8640.2023.12.020
收稿日期:
2022-09-12
修回日期:
2023-04-23
出版日期:
2023-12-30
发布日期:
2024-02-20
通讯作者:
刘勇敢,E-mail:作者简介:
刘勇敢,E-mail:1990389480@qq.com。
ZHOU Furong, LI Yanzhu, LIU Yonggan()
Received:
2022-09-12
Revised:
2023-04-23
Online:
2023-12-30
Published:
2024-02-20
摘要:
结直肠癌是世界上最常见的癌症之一。长链非编码RNA(lncRNA)单核苷酸多态性(SNP)在结直肠癌发生、发展过程中起着至关重要的作用。lncRNA SNP作为新的、低侵入性的生物标志物对结直肠癌的易感性预测、预后评估、病理分级判定、药物敏感性监测具有一定价值。
中图分类号:
周福荣, 李龑杼, 刘勇敢. lncRNA SNP在结直肠癌易感性预测和预后评估中的应用[J]. 检验医学, 2023, 38(12): 1206-1210.
ZHOU Furong, LI Yanzhu, LIU Yonggan. Application of lncRNA SNP in colorectal cancer susceptibility prediction and prognosis assessment[J]. Laboratory Medicine, 2023, 38(12): 1206-1210.
[1] |
LI Y C, CHEN C H, CHANG C L, et al. Melatonin and hyperbaric oxygen therapies suppress colorectal carcinogenesis through pleiotropic effects and multifaceted mechanisms[J]. Int J Biol Sci, 2021, 17(14):3728-3744.
DOI URL |
[2] |
LI N, LU B, LUO C, et al. Incidence,mortality,survival,risk factor and screening of colorectal cancer:a comparison among China,Europe,and northern America[J]. Cancer Lett, 2021, 522:255-268.
DOI URL |
[3] |
YARLA N S, GALI H, PATHURI G, et al. Targeting the paracrine hormone-dependent guanylate cyclase/cGMP/phosphodiesterases signaling pathway for colorectal cancer prevention[J]. Semin Cancer Biol, 2019, 56:168-174.
DOI PMID |
[4] |
DEKKER E, TANIS P J, VLEUGELS J L A, et al. Colorectal cancer[J]. Lancet, 2019, 394(10207):1467-1480.
DOI PMID |
[5] |
KEUM N, GIOVANNUCCI E. Global burden of colorectal cancer:emerging trends,risk factors and prevention strategies[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(12):713-732.
DOI |
[6] |
ABDI E, LATIFI-NAVID S, LATIFI-NAVID H. Long noncoding RNA polymorphisms and colorectal cancer risk:progression and future perspectives[J]. Environ Mol Mutagen, 2022, 63(2):98-112.
DOI URL |
[7] |
VILLANUEVA L, ÁLVAREZ-ERRICO D, ESTELLER M. The contribution of epigenetics to cancer immunotherapy[J]. Trends Immunol, 2020, 41(8):676-691.
DOI PMID |
[8] | LI K, HAN Z, WU J, et al. The relationship between MALAT1 polymorphism rs3200401 C>T and the risk of overall cancer:a meta-analysis[J]. Medicina(Kaunas), 2022, 58(2):176. |
[9] |
MARCHESE F P, RAIMONDI I, HUARTE M. The multidimensional mechanisms of long noncoding RNA function[J]. Genome Biol, 2017, 18(1):206.
DOI PMID |
[10] | WEI L, WANG X, LV L, et al. The emerging role of noncoding RNAs in colorectal cancer chemoresistance[J]. Cell Oncol(Dordr), 2019, 42(6):757-768. |
[11] |
BERMÚDEZ M, AGUILAR-MEDINA M, LIZÁRRAGA-VERDUGO E, et al. LncRNAs as regulators of autophagy and drug resistance in colorectal cancer[J]. Front Oncol, 2019, 9:1008.
DOI PMID |
[12] |
ABDEL-MOTALEB A I, AZZAZY H M, MOUSTAFA A. Toward colorectal cancer biomarkers:the role of genetic variation,wnt pathway,and long noncoding RNAs[J]. OMICS, 2021, 25(5):302-312.
DOI URL |
[13] |
WANG Y, QIU Z, TIAN G, et al. Association between long noncoding RNA rs944289 and rs7990916 polymorphisms and the risk of colorectal cancer in a Chinese population[J]. Sci Rep, 2022, 12(1):2495.
DOI PMID |
[14] |
GAO X, ZHANG S, WANG X. HAND2-AS1 rs2276941 polymorphism affecting the binding of hsa-miR-1275 is associated with the risk of colorectal cancer[J]. DNA Cell Biol, 2022, 41(6):600-605.
DOI URL |
[15] |
YU B, CHEN J, HOU C, et al. LncRNA H19 gene rs2839698 polymorphism is associated with a decreased risk of colorectal cancer in a Chinese Han population:a case-control study[J]. J Clin Lab Anal, 2020, 34(8):e23311.
DOI URL |
[16] |
LI Y, BAO C, GU S, et al. Associations between novel genetic variants in the promoter region of MALAT1 and risk of colorectal cancer[J]. Oncotarget, 2017, 8(54):92604-92614.
DOI URL |
[17] |
SHAKEF O G, SENOUSY M A, ELBAZ E M. Association of rs6983267 at 8q24,HULC rs7763881 polymorphisms and serum lncRNAs CCAT2 and HULC with colorectal cancer in Egyptian patients[J]. Sci Rep, 2017, 7(1):16246.
DOI |
[18] |
GAO X, YANG J, WANG D, et al. Association between HULC rs7763881 and cancer risk:an updated meta-analysis[J]. Nucleosides Nucleotides Nucleic Acids, 2022, 41(1):85-96.
DOI URL |
[19] |
YE D, HU Y, JING F, et al. A novel SNP in promoter region of RP11-3N2.1 is associated with reduced risk of colorectal cancer[J]. J Hum Genet, 2018, 63(1):47-54.
DOI PMID |
[20] | YANG M L, HUANG Z, WU L N, et al. LncRNA-PCAT1 rs2632159 polymorphism could be a biomarker for colorectal cancer susceptibility[J]. Biosci Rep, 2019, 39(7):BSR20190708. |
[21] |
FAN J, XU H, LIU B, et al. Association of a novel antisense lncRNA TP73-AS1 polymorphisms and expression with colorectal cancer susceptibility and prognosis[J]. Genes Genomics, 2022, 44(7):889-897.
DOI |
[22] | ZHOU L, ZHANG Y, JIN J, et al. Correlation between lncRNA SNHG16 gene polymorphism and its interaction with environmental factors and susceptibility to colorectal cancer[J]. Medicine(Baltimore), 2020, 99(48):e23372. |
[23] |
QIN W, WANG X, WANG Y, et al. Functional polymorphisms of the lncRNA H19 promoter region contribute to the cancer risk and clinical outcomes in advanced colorectal cancer[J]. Cancer Cell Int, 2019, 19:215.
DOI |
[24] |
WU H, HE G, HAN H, et al. Analysis of MIR155HG variants and colorectal cancer susceptibility in Han Chinese population[J]. Mol Genet Genomic Med, 2019, 7(8):e778.
DOI URL |
[25] | YANG R Q, JIN Z Z, JIANG S Y, et al. LncRNA GAS5 interacts with microRNA-10b to inhibit cell proliferation and migration and induces apoptosis in colorectal cancer[J]. Comput Math Methods Med, 2022, 2022:4996870. |
[26] |
CAO X, ZHUANG S, HU Y, et al. Associations between polymorphisms of long non-coding RNA MEG3 and risk of colorectal cancer in Chinese[J]. Oncotarget, 2016, 7(14):19054-19059.
DOI PMID |
[27] |
GAO X, LI X, ZHANG S, et al. The association of MEG3 gene rs7158663 polymorphism with cancer susceptibility[J]. Front Oncol, 2021, 11:796774.
DOI URL |
[28] |
YANG X, WU S, LI X, et al. MAGI2-AS3 rs7783388 polymorphism contributes to colorectal cancer risk through altering the binding affinity of the transcription factor GR to the MAGI2-AS3 promoter[J]. J Clin Lab Anal, 2020, 34(10):e23431.
DOI URL |
[29] | LV Z, XU Q, SUN L, et al. Four novel polymorphisms in long non-coding RNA HOTTIP are associated with the risk and prognosis of colorectal cancer[J]. Biosci Rep, 2019, 39(5):BSR20180573. |
[30] |
ZHANG L, MAO J. Long-chain noncoding RNA PVT1 gene polymorphisms are associated with the risk and prognosis of colorectal cancer in the Han Chinese population[J]. Genet Test Mol Biomarkers, 2019, 23(10):728-736.
DOI URL |
[31] |
WU S, SUN H, WANG Y, et al. MALAT 1 rs664589 polymorphism inhibits binding to miR-194-5p,contributing to colorectal cancer risk,growth,and metastasis[J]. Cancer Res, 2019, 79(20):5432-5441.
DOI URL |
[32] | ALMUTAIRI M, PARINE N R, SHAIK J P, et al. Association between polymorphisms in PRNCR1 and risk of colorectal cancer in the Saudi population[J]. PLoS One, 2019, 14(9):e0220931. |
[33] |
ZHENG Y, YANG C, TONG S, et al. Genetic variation of long non-coding RNA TINCR contribute to the susceptibility and progression of colorectal cancer[J]. Oncotarget, 2017, 8(20):33536-33543.
DOI PMID |
[34] |
JIN M, YE D, LI Y, et al. Association of a novel genetic variant in RP11-650L12.2 with risk of colorectal cancer in Han Chinese population[J]. Gene, 2017, 624:21-25.
DOI PMID |
[35] |
JIANG D, JIN M, YE D, et al. Polymorphisms of a novel long non-coding RNA RP11-108K3.2 with colorectal cancer susceptibility and their effects on its expression[J]. Int J Biol Markers, 2020, 35(1):3-9.
DOI PMID |
[36] | KIM J O, JUN H H, KIM E J, et al. Genetic variants of HOTAIR associated with colorectal cancer susceptibility and mortality[J]. Front Onco, 2020, 10:72. |
[37] |
YANG Q, ZHENG W, SHEN Z, et al. MicroRNA binding site polymorphisms of the long-chain noncoding RNA MALAT1 are associated with risk and prognosis of colorectal cancer in Chinese Han population[J]. Genet Test Mol Biomarkers, 2020, 24(5):239-248.
DOI URL |
[38] |
GAO X, ZHANG S, WANG X. VPS9D1-AS1 gene rs7206570 polymorphism associated with the clinical stage of colorectal cancer and binding with hsa-miR-361-3p[J]. Hum Cell, 2022, 35(2):522-527.
DOI |
[39] |
ALI M A, SHAKER O G, EZZAT E M, et al. Association between rs1859168/HOTTIP expression level and colorectal cancer and adenomatous polyposis risk in Egyptians[J]. J Interferon Cytokine Res, 2020, 40(6):279-291.
DOI URL |
[40] | WU S, YANG X, TANG W, et al. Chemotherapeutic risk lncRNA-PVT1 SNP sensitizes metastatic colorectal cancer to FOLFOX regimen[J]. Front Onco, 2022, 12:808889. |
[41] |
LAMPROPOULOU D I, ARAVANTINOS G, KATIFELIS H, et al. Long non-coding RNA polymorphisms and prediction of response to chemotherapy based on irinotecan in patients with metastatic colorectal cancer[J]. Cancer Biomark, 2019, 25(2):213-221.
DOI URL |
[42] |
SERRATÌ S, DE SUMMA S, PILATO B, et al. Next-generation sequencing:advances and applications in cancer diagnosis[J]. Onco Targets Ther, 2016, 9:7355-7365.
DOI URL |
[43] |
XIAO Z S, ZHAO L, ZHANG X N, et al. Effect of rs67085638 in long non-coding RNA(CCAT1) on colon cancer chemoresistance to paclitaxel through modulating the microRNA-24-3p and FSCN1[J]. J Cell Mol Med, 2021, 25(8):3744-3753.
DOI URL |
[44] | ZHANG C, WANG Y. KCNQ1OT1 polymorphism rs35622507 and methylation status of KCNQ1OT1 promoter influence the drug resistance to L-OHP[J]. Aging(Albany NY), 2022, 14(4):1836-1847. |
[45] |
LICHTENSTEIN P, HOLM N V, VERKASALO P K, et al. Environmental and heritable factors in the causation of cancer:analyses of cohorts of twins from Sweden,Denmark,and Finland[J]. N Engl J Med, 2000, 343(2):78-85.
DOI URL |
[46] |
CHO Y A, LEE J, OH J H, et al. Genetic risk score,combined lifestyle factors and risk of colorectal cancer[J]. Cancer Res Treat, 2019, 51(3):1033-1040.
DOI URL |
[1] | 张菲斐, 王婧雯, 张跃欣, 郑大炜, 门翔. COPD患者lncRNA MIR155HG表达与肺功能的相关性及其对AECODP的辅助诊断价值[J]. 检验医学, 2024, 39(1): 31-36. |
[2] | 兰俊, 路舒婷, 杨健睿. 结直肠癌患者血清IL-26、IL-27水平检测的临床意义[J]. 检验医学, 2024, 39(1): 7-12. |
[3] | 李梁珊, 赵虎, 王诗雯. 基于加权基因共表达网络分析筛选结直肠癌潜在的预后生物标志物[J]. 检验医学, 2023, 38(9): 825-832. |
[4] | 赵沱, 白鹏飞, 孙婧, 程涛. 血清lncRNA NEAT1在急性心肌梗死患者中的表达及其临床意义[J]. 检验医学, 2023, 38(9): 897-900. |
[5] | 孙泽朋, 王洪彬, 王建东, 宋德伟, 肖鹏. 心肌损伤多肽和蛋白类标志物方法学分析和进展[J]. 检验医学, 2023, 38(8): 784-789. |
[6] | 朱日祥, 殷杰. 可溶性生长刺激表达基因2蛋白与结直肠癌患者临床病理特征和预后的关系[J]. 检验医学, 2023, 38(7): 629-633. |
[7] | 王腾飞, 陈珊, 安和兵, 周蕾. 急性白血病患者外周血lncRNA CRNDE、miR-384表达及其临床意义[J]. 检验医学, 2023, 38(7): 686-691. |
[8] | 张敏, 王彬宇, 迟伟群, 刘禹. 外泌体非编码RNA作为疾病诊断生物标志物的研究进展[J]. 检验医学, 2023, 38(6): 594-598. |
[9] | 江梦颖, 刘鷖雯, 何怡青, 许静, 杨翠霞, 高锋, 杜艳. 血清S1P检测在结直肠癌早期诊断中的临床价值[J]. 检验医学, 2023, 38(4): 307-312. |
[10] | 张国良, 刘鷖雯, 何怡青, 许静, 杨翠霞, 高锋, 刘华. 血清HYAL1、HA在结直肠癌辅助诊断和疗效监测中的价值[J]. 检验医学, 2023, 38(4): 313-319. |
[11] | 杨婕琳, 王晓媛, 李海霞. TRX和TXNIP在结直肠癌组织中的表达及其交互作用[J]. 检验医学, 2023, 38(4): 330-336. |
[12] | 刘庆阳, 袁建明, 夏进军, 姜风英, 王秋波, 王晓明. 基于GEO数据库和临床样本验证CXCL9作为类风湿关节炎生物标志物的研究[J]. 检验医学, 2023, 38(12): 1121-1129. |
[13] | 鲁启源, 卢建华. 人工关节假体周围感染诊断生物标志物研究进展[J]. 检验医学, 2023, 38(10): 997-1002. |
[14] | 陈雪薇, 李一荣. 基于GEO数据库筛选代谢综合征潜在生物标志物[J]. 检验医学, 2023, 38(1): 32-38. |
[15] | 王瑞娟, 李超, 段丽娟, 尚淼, 杨如玉. lncRNA RBM5-AS1在急性髓系白血病中的表达及其临床意义[J]. 检验医学, 2023, 38(1): 39-45. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||