检验医学 ›› 2024, Vol. 39 ›› Issue (10): 956-962.DOI: 10.3969/j.issn.1673-8640.2024.10.006

• 论著 • 上一篇    下一篇

基于临床特征和血清肿瘤标志物构建的列线图模型在肺部良性、恶性病变鉴别诊断中的应用

雷鸣, 翟丽, 魏颖, 林奕宸, 郭萌月()   

  1. 云南省肿瘤医院 昆明医科大学第三附属医院 北京大学肿瘤医院云南医院医学检验科,云南 昆明 650118
  • 收稿日期:2023-12-25 修回日期:2024-06-03 出版日期:2024-10-30 发布日期:2024-11-08
  • 通讯作者: 郭萌月,E-mail:goumengyue@kmmu.edu.cn
  • 作者简介:雷鸣,男,1978年生,硕士,副主任技师,主要从事分子生物学检验工作。
  • 基金资助:
    云南省基础研究基金项目(202101AY070001-165)

Application of nomogram model based on clinical characteristics and serum tumor markers in differential diagnosis of benign and malignant lung lesions

LEI Ming, ZHAI Li, WEI Ying, LIN Yichen, GUO Mengyue()   

  1. Department of Clinical Laboratory,Yunnan Cancer Hospital,the Third Affiliated Hospital of Kunming Medical University,Peking University Cancer Hospital,Kunming 650118,Yunnan,China
  • Received:2023-12-25 Revised:2024-06-03 Online:2024-10-30 Published:2024-11-08

摘要:

目的 基于临床特征和血清肿瘤标志物构建辅助鉴别诊断肺部良性、恶性病变的列线图模型。方法 选取2018年1月—2019年12月昆明医科大学第三附属医院接受手术治疗的1 335例肺癌患者(肺癌组)和234例肺部良性结节患者(良性结节组),按7:3随机分为训练集和验证集。收集所有患者的临床资料,并检测癌胚抗原(CEA)、糖类抗原(CA) 125、CA15-3、CA19-9、CA242、CA72-4、细胞角蛋白19片段(CYFRA21-1)、铁蛋白(FER)、鳞状上皮细胞癌抗原(SCC-Ag)和神经元特异性烯醇化酶(NSE)水平。采用Logistic回归分析筛选出差异有统计学意义的指标,并构建列线图模型。采用C-index、受试者工作特征(ROC)曲线、校准曲线和决策曲线评估列线图模型的性能。结果 在训练集中,良性结节组和肺癌组之间年龄和CEA、CA125、CA15-3、CA19-9、CYFRA21-1、SCC-Ag、NSE水平差异均有统计学意义(P<0.05);年龄、家族肿瘤史、CEA、CYFRA21-1、NSE均是肺癌发生的独立危险因素[比值比(OR)值分别为1.019、3.243、1.374、1.262、1.073,95%可信区间(CI)分别为1.001~1.037、1.357~7.749、1.225~1.540、1.127~1.412、1.024~1.125,P<0.05];采用ROC曲线确立CEA、CYFRA21-1和NSE鉴别诊断良性结节和肺癌的最佳临界值,依据最佳临界值将3项指标转变为二分类变量,并结合患者的年龄、家族肿瘤史建立列线图模型。在训练集和验证集中,列线图模型的C-index分别为0.816、0.843;鉴别诊断良性结节和肺癌的曲线下面积(AUC)分别为0.822、0.861,敏感性分别为67.5%、65.0%,特异性分别为81.7%、91.8%。列线图模型具有较高的净获益率,净获益率最大值为0.78。在验证集中,Logistic回归模型诊断TNM Ⅰ、Ⅱ、Ⅲ期肺癌的AUC分别为0.775、0.843、0.911,敏感性分别为58.2%、78.3%、83.0%,特异性分别为87.3%、76.1%、88.7%。结论 基于临床特征和血清肿瘤标志物构建的列线图模型对肺部良性、恶性病变的鉴别诊断具有较高的效能。

关键词: 列线图模型, Logistic回归分析, 肿瘤标志物, 肺癌

Abstract:

Objective Based on clinical characteristics and serum tumor markers,to construct a nomogram model to assist in the differential diagnosis of benign and malignant lung lesions. Methods Totally,1 335 patients with lung cancer(lung cancer group) and 234 patients with benign nodule(benign nodule group) who received surgical treatment in the Third Affiliated Hospital of Kunming Medical University from January 2018 to December 2019 were enrolled and randomly divided into training set and validation set according to 7:3. The clinical data of all patients were collected. Carcinoembryonic antigen(CEA),carbohydrate antigen(CA) 125,CA15-3,CA19-9,CA242,CA72-4,cytokeratin 19 fragment(CYFRA21-1),ferritin(FER),squamous cell carcinoma antigen(SCC-Ag) and neuron-specific enolase(NSE) were determined. Logistic regression analysis was used to screen the indicators with statistical significance,and the nomogram model was constructed. C-index,receiver operating characteristic(ROC) curve,calibration curve and decision curve were used to evaluate the performance of nomogram model. Results In the training set,there was statistical significance in age,CEA,CA125,CA15-3,CA19-9,CYFRA21-1,SCC-Ag and NSE levels between benign nodule group and lung cancer group(P<0.05). Age,family history of cancer,CEA,CYFRA21-1 and NSE were all independent risk factors for lung cancer [odds ratios(OR) were 1.019,3.243,1.374,1.262 and 1.073,95% confidence intervals(CI) were 1.001-1.037,1.357-7.749,1.225-1.540,1.127-1.412 and 1.024-1.125,respectively,P<0.05]. ROC curve was used to establish the optimal cut-off values of CEA,CYFRA21-1 and NSE for the differential diagnosis of benign nodule and lung cancer. According to the optimal cut-off values,the 3 indicators were transformed into binary categorical variables,and a nomogram model was established combining age and family history of cancer. In the training set and validation set,the C-indexes of nomogram model were 0.816 and 0.843,respectively. The areas under curves(AUC) for differential diagnosis of benign nodule and lung cancer were 0.822 and 0.861,the sensitivities were 67.5% and 65.0%,the specificities were 81.7% and 91.8%,respectively. The nomogram model had a high net benefit rate,and the maximum net benefit rate was 0.78. In the validation set,the AUC of Logistic regression model in the diagnosis of TNM stage Ⅰ,Ⅱ and Ⅲ lung cancer were 0.775,0.843 and 0.911,the sensitivities were 58.2%,78.3% and 83.0%,and the specificities were 87.3%,76.1% and 88.7%,respectively. Conclusions The nomogram model based on clinical characteristics and serum tumor markers has high efficiency in the differential diagnosis of benign and malignant lung lesions.

Key words: Nomogram model, Logistic regression analysis, Tumor marker, Lung cancer

中图分类号: