检验医学 ›› 2021, Vol. 36 ›› Issue (9): 976-980.DOI: 10.3969/j.issn.1673-8640.2021.09.019

• 综述与讲座 • 上一篇    下一篇

可解释人工智能在疾病诊疗中的应用

井杰, 王蓓蕾, 刘善荣()   

  1. 海军军医大学第一附属医院实验诊断科,上海 200433
  • 收稿日期:2021-02-05 出版日期:2021-09-30 发布日期:2021-09-24
  • 通讯作者: 刘善荣
  • 作者简介:刘善荣,E-mail: liushanrong01@126.com
    井 杰,男,1992年生,硕士,技师,主要从事检验医学与人工智能相关研究。
  • 基金资助:
    上海市优秀学科带头人基金项目(18XD1405300)

Explainable artificial intelligence in disease diagnosis and treatment

JING Jie, WANG Beilei, LIU Shanrong()   

  1. Department of Clinical Laboratory,the First Affiliated Hospital of Naval Medical University,Shanghai 200433,China
  • Received:2021-02-05 Online:2021-09-30 Published:2021-09-24
  • Contact: LIU Shanrong

摘要:

可解释人工智能(XAI)是基于人工智能(AI)原则构建的可被用户理解和信任的AI系统,在检验医学领域具有广阔的应用前景。文章立足于检验医学的研究现状,结合XAI的基本概念、重要性和实现方法,重点阐述基于知识图谱的XAI技术在检验医学领域的研究思路,并展望检验XAI在疾病诊疗中的应用前景,及其研发面临的挑战和应用局限性。

关键词: 可解释人工智能, 检验医学, 知识图谱

Abstract:

Explainable artificial intelligence(XAI) refers to an artificial intelligence(AI)system based on some AI principles that can be understood and trusted by users,and has broad application prospects in the field of laboratory medicine. This review is based on the research status of clinical laboratory medicine,combined with the basic concepts,importance and implementation methods of XAI,focuses on the research ideas of XAI technology based on knowledge graphs in the field of clinical laboratory medicine,and looks forward to the application prospects of XAI in disease diagnosis and treatment,research challenges and application limitations.

Key words: Explainable artificial intelligence, Clinical Laboratory medicine, Knowledge graph

中图分类号: