Laboratory Medicine ›› 2025, Vol. 40 ›› Issue (1): 8-14.DOI: 10.3969/j.issn.1673-8640.2025.01.002
Previous Articles Next Articles
WANG Chi, LIU Shaomei, LI Mianyang()
Received:
2024-05-14
Revised:
2024-11-21
Online:
2025-01-30
Published:
2025-02-17
CLC Number:
WANG Chi, LIU Shaomei, LI Mianyang. Research progress on artificial intelligence in assisting diagnosis of bone marrow cell morphology[J]. Laboratory Medicine, 2025, 40(1): 8-14.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2025.01.002
系统名称 | 公司 | 应用范围 |
---|---|---|
DCS-1600细胞医学图像分析仪、DSS-8200玻片扫描影像系统 | 深圳深析智能有限公司 | 利用计算机软件对涂片的细胞进行分类标记和分析,快速生成细胞形态和计数报告 |
Morphogo系统 | 杭州智微信息科技有限公司 | 对骨髓有核细胞进行图像采集、定位、预分类和数量统计,可通过内置模板形成图文报告 |
Aether AI Hema骨髓涂片数位形态分析软件 | 中国台湾云象科技公司 | 自动分类计数骨髓细胞,可在5 min之内完成判读,可识别15种骨髓血液细胞 |
Cellsee骨髓细胞形态分析仪 | 无锡瑄立智能科技有限公司 | 基于高倍镜下高清细胞图像,采用辅助图像识别算法计数骨髓和外周血样本中的各类细胞并分类,人工审核后修改内置模板,出具图文报告;部分医院已试用于浆膜腔积液、脑脊液图像识别等 |
系统名称 | 公司 | 应用范围 |
---|---|---|
DCS-1600细胞医学图像分析仪、DSS-8200玻片扫描影像系统 | 深圳深析智能有限公司 | 利用计算机软件对涂片的细胞进行分类标记和分析,快速生成细胞形态和计数报告 |
Morphogo系统 | 杭州智微信息科技有限公司 | 对骨髓有核细胞进行图像采集、定位、预分类和数量统计,可通过内置模板形成图文报告 |
Aether AI Hema骨髓涂片数位形态分析软件 | 中国台湾云象科技公司 | 自动分类计数骨髓细胞,可在5 min之内完成判读,可识别15种骨髓血液细胞 |
Cellsee骨髓细胞形态分析仪 | 无锡瑄立智能科技有限公司 | 基于高倍镜下高清细胞图像,采用辅助图像识别算法计数骨髓和外周血样本中的各类细胞并分类,人工审核后修改内置模板,出具图文报告;部分医院已试用于浆膜腔积液、脑脊液图像识别等 |
[1] | ALAGGIO R, AMADOR C, ANAGNOSTOPOULOS I, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours:lymphoid neoplasms[J]. Leukemia, 2022, 36(7):1720-1748. |
[2] | KHOURY J D, SOLARY E, ABLA O, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours:myeloid and histiocytic/dendritic neoplasms[J]. Leukemia, 2022, 36(7):1703-1719. |
[3] | 刘水清, 彭贤贵, 张杨. 《人工智能辅助血细胞形态学检查的技术要求及其临床应用中国专家共识(2024版)》解读[J]. 临床血液学杂志, 2024, 37(5):298-300. |
[4] | 刘贵建, 庞博. 应促进和拓展人工智能辅助血细胞形态学检查的临床应用[J]. 中华检验医学杂志, 2023, 46(3):231-237. |
[5] | 卢兴国. 血液病形态学检查和整合诊断思路[J]. 中华检验医学杂志, 2023, 46(3):238-242. |
[6] | 杨军霞, 连荷清, 庞博. 人工智能血细胞形态学检查的关键技术进展[J]. 中华检验医学杂志, 2023, 46(3):326-330. |
[7] | FU X, FU M, LI Q, et al. Morphogo:an automatic bone marrow cell classification system on digital images analyzed by artificial intelligence[J]. Acta Cytol, 2020, 64(6):588-596. |
[8] | VAN EEKELEN L, LITJENS G, HEBEDA K M. Artificial intelligence in bone marrow histological diagnostics:potential applications and challenges[J]. Pathobiology, 2024, 91(1):8-17. |
[9] | YASNITSKY L N. Artificial intelligence and medicine:history,current state,and forecasts for the future[J]. Curr Hypertens Rev, 2020, 16(3):210-215. |
[10] | SRINIDHI C L, CIGA O, MARTEL A L. Deep neural network models for computational histopathology:a survey[J]. Med Image Anal, 2021, 67:101813. |
[11] | BEN BARUCH S, ROTMAN-NATIV N, BARAM A, et al. Cancer-cell deep-learning classification by integrating quantitative-phase spatial and temporal fluctuations[J]. Cells, 2021, 10(12):3353. |
[12] |
李文静, 白静, 彭斌, 等. 图卷积神经网络及其在图像识别领域的应用综述[J]. 计算机工程与应用, 2023, 59(22):15-35.
DOI |
[13] | LEWIS J E, POZDNYAKOVA O. Digital assessment of peripheral blood and bone marrow aspirate smears[J]. Int J Lab Hematol, 2023, 45(2):50-58. |
[14] |
LV Z, CAO X, JIN X, et al. High-accuracy morphological identification of bone marrow cells using deep learning-based Morphogo system[J]. Sci Rep, 2023, 13(1):13364.
DOI PMID |
[15] | LIN Y, CHEN Q, CHEN T. Recent advancements in machine learning for bone marrow cell morphology analysis[J]. Front Med(Lausanne), 2024, 11:1402768. |
[16] |
ZHENG X, WANG Y, WANG G, et al. Fast and robust segmentation of white blood cell images by self-supervised learning[J]. Micron, 2018, 107:55-71.
DOI PMID |
[17] | TARIMO S A, JANG M A, NGASA E E, et al. WBC YOLO-ViT:2 Way - 2 stage white blood cell detection and classification with a combination of YOLOv5 and vision transformer[J]. Comput Biol Med, 2024, 169:107875. |
[18] | REHMAN A, ABBAS N, SABA T, et al. Classification of acute lymphoblastic leukemia using deep learning[J]. Microsc Res Tech, 2018, 81(11):1310-1317. |
[19] | HEGDE R B, PRASAD K, HEBBAR H, et al. Feature extraction using traditional image processing and convolutional neural network methods to classify white blood cells:a study[J]. Australas Phys Eng Sci Med, 2019, 42(2):627-638. |
[20] | NANAA A, AKKUS Z, LEE W Y, et al. Machine learning and augmented human intelligence use in histomorphology for haematolymphoid disorders[J]. Pathology, 2021, 53(3):400-407. |
[21] | CHOI J W, KU Y, YOO B W, et al. White blood cell differential count of maturation stages in bone marrow smear using dual-stage convolutional neural networks[J]. PLoS One, 2017, 12(12):e0189259. |
[22] |
MATEK C, KRAPPE S, MUNZENMAYER C, et al. Highly accurate differentiation of bone marrow cell morphologies using deep neural networks on a large image data set[J]. Blood, 2021, 138(20):1917-1927.
DOI PMID |
[23] | GLÜGE S, BALABANOV S, KOELZER V H, et al. Evaluation of deep learning training strategies for the classification of bone marrow cell images[J]. Comput Methods Programs Biomed, 2024, 243:107924. |
[24] |
NAKAMURA I, IDA H, YABUTA M, et al. Evaluation of two semi-supervised learning methods and their combination for automatic classification of bone marrow cells[J]. Sci Rep, 2022, 12(1):16736.
DOI PMID |
[25] | WANG D, HWANG M, JIANG W C, et al. A deep learning method for counting white blood cells in bone marrow images[J]. BMC Bioinformatics, 2021, 22(5):94. |
[26] | CHANDRADEVAN R, ALJUDI A A, DRUMHELLER B R, et al. Machine-based detection and classification for bone marrow aspirate differential counts:initial development focusing on nonneoplastic cells[J]. Lab Invest, 2020, 100(1):98-109. |
[27] |
LIU J, YUAN R, LI Y, et al. A deep learning method and device for bone marrow imaging cell detection[J]. Ann Transl Med, 2022, 10(4):208.
DOI PMID |
[28] | TAYEBI R M, MU Y, DEHKHARGHANIAN T, et al. Automated bone marrow cytology using deep learning to generate a histogram of cell types[J]. Commun Med (Lond), 2022, 2:45. |
[29] |
OUYANG N, WANG W, MA L, et al. Diagnosing acute promyelocytic leukemia by using convolutional neural network[J]. Clinica Chimica Acta, 2021, 512:1-6.
DOI PMID |
[30] | ECKARDT J N, SCHMITTMANN T, RIECHERT S, et al. Deep learning identifies acute promyelocytic leukemia in bone marrow smears[J]. BMC Cancer, 2022, 22(1):201. |
[31] | XIAO Y, HUANG Z, WU J, et al. Rapid screening of acute promyelocytic leukaemia in daily batch specimens:a novel artificial intelligence-enabled approach to bone marrow morphology[J]. Clin Transl Med, 2024, 14(7):e1783. |
[32] |
MANESCU P, NARAYANAN P, BENDKOWSKI C, et al. Detection of acute promyelocytic leukemia in peripheral blood and bone marrow with annotation-free deep learning[J]. Sci Rep, 2023, 13(1):2562.
DOI PMID |
[33] | REZAYI S, MOHAMMADZADEH N, BOURAGHI H, et al. Timely diagnosis of acute lymphoblastic leukemia using artificial intelligence-oriented deep learning methods[J]. Comput Intell Neurosci, 2021, 2021:5478157. |
[34] | ATTEIA G, ALHUSSAN A A, SAMEE N A. BO-ALLCNN:bayesian-based optimized CNN for acute lymphoblastic leukemia detection in microscopic blood smear images[J]. Sensors(Basel), 2022, 22(15):5520. |
[35] | SHAFIQUE S, TEHSIN S. Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks[J]. Technol Cancer Res Treat, 2018, 17:1533033818802789. |
[36] |
KIMURA K, TABE Y, AI T, et al. A novel automated image analysis system using deep convolutional neural networks can assist to differentiate MDS and AA[J]. Sci Rep, 2019, 9(1):13385.
DOI PMID |
[37] |
MORI J, KAJI S, KAWAI H, et al. Assessment of dysplasia in bone marrow smear with convolutional neural network[J]. Sci Rep, 2020, 10(1):14734.
DOI PMID |
[38] |
LEE N, JEONG S, PARK M J, et al. Deep learning application of the discrimination of bone marrow aspiration cells in patients with myelodysplastic syndromes[J]. Sci Rep, 2022, 12(1):18677.
DOI PMID |
[39] | ARBER D A, ORAZI A, HASSERJIAN R P, et al. International consensus classification of myeloid neoplasms and acute leukemias:integrating morphologic,clinical,and genomic data[J]. Blood, 2022, 140(11):1200-1228. |
[40] |
NAGATA Y, ZHAO R, AWADA H, et al. Machine learning demonstrates that somatic mutations imprint invariant morphologic features in myelodysplastic syndromes[J]. Blood, 2020, 136(20):2249-2262.
DOI PMID |
[41] | HUANG F, GUANG P, LI F, et al. AML,ALL,and CML classification and diagnosis based on bone marrow cell morphology combined with convolutional neural network:a STARD compliant diagnosis research[J]. Medicine(Baltimore), 2020, 99(45):e23154. |
[42] | YU Z, LI J, WEN X, et al. AMLnet,a deep-learning pipeline for the differential diagnosis of acute myeloid leukemia from bone marrow smears[J]. J Hematol Oncol, 2023, 16(1):27. |
[43] | AHMED N, YIGIT A, ISIK Z, et al. Identification of leukemia subtypes from microscopic images using convolutional neural network[J]. Diagnostics(Basel), 2019, 9(3):104. |
[44] | 杜忠华, 张福明, 吴波, 等. 人工智能技术Morphogo系统在骨髓细胞形态学检查的临床应用[J]. 中国实验诊断学, 2021, 25(7):958-961. |
[45] |
MOHLMAN J S, LEVENTHAL S D, HANSEN T, et al. Improving augmented human intelligence to distinguish burkitt lymphoma from diffuse large B-cell lymphoma cases[J]. Am J Clin Pathol, 2020, 153(6):743-759.
DOI PMID |
[46] | TANG G, FU X, WANG Z, et al. A machine learning tool using digital microscopy (Morphogo)for the identification of abnormal lymphocytes in the bone marrow[J]. Acta Cytol, 2021, 65(4):354-357. |
[47] | CHEN P, CHEN XU R, CHEN N, et al. Detection of metastatic tumor cells in the bone marrow aspirate smears by artificial intelligence (AI)-based Morphogo system[J]. Front Oncol, 2021, 11:742395. |
[48] | 刘思恒, 李佳, 杨武晨, 等. 人工智能识别骨髓细胞可应用于诊断急性白血病微小残留病[J]. 中华检验医学杂志, 2023, 46(3):280-285. |
[49] | 刘思恒, 李佳, 彭贤贵, 等. 探索Morphogo在多发性骨髓瘤MRD检测中的应用[J]. 重庆医科大学学报, 2022, 47(8):948-952. |
[50] | CHEN P, ZHANG L, CAO X, et al. Detection of circulating plasma cells in peripheral blood using deep learning‐based morphological analysis[J]. Cancer, 2024, 130(10):1884-1893. |
[51] | BRÜCK O E, LALLUKKA-BRÜCK S E, HOHTARI H R, et al. Machine learning of bone marrow histopathology identifies genetic and clinical determinants in patients with MDS[J]. Blood Cancer Discov, 2021, 2(3):238-249. |
[52] | XING Y, LIU X, DAI J, et al. Artificial intelligence of digital morphology analyzers improves the efficiency of manual leukocyte differentiation of peripheral blood[J]. BMC Med Inform Decis Mak, 2023, 23(1):50. |
[1] | JIANG Haoqin, XU Qianqian, XU Liming, GUAN Ming. Homogenization management and practice of clinical blood and body fluid determinations [J]. Laboratory Medicine, 2024, 39(1): 95-99. |
[2] | YU Qi, WANG Yanchun, GUO Lin, LU Renquan. Influence of particle radiotherapy on bone marrow,liver and kidney functions in patients with prostate cancer [J]. Laboratory Medicine, 2023, 38(5): 430-434. |
[3] | FANG Yinghui, WANG Weiguo, ZHANG Hua, GU Yan, ZHENG Fang, LI Liping. Characteristics of blastic plasmacytoid dendritic cell neoplasm [J]. Laboratory Medicine, 2022, 37(5): 433-437. |
[4] | JING Jie, WANG Beilei, LIU Shanrong. Explainable artificial intelligence in disease diagnosis and treatment [J]. Laboratory Medicine, 2021, 36(9): 976-980. |
[5] | LI Bin, ZHAO Dong, HUANG Rong, GUO Juansun. Role of bone marrow vascular endothelial growth factor levels in patients with diffuse large B-cell lymphoma after treatment [J]. Laboratory Medicine, 2021, 36(5): 480-485. |
[6] | DING Jing, LIU Weiling, WAN Liping, LI Li, BAI Ping. Analysis on hemophagocytic phenomenon after allogeneic hematopoietic stem cell transplantation [J]. Laboratory Medicine, 2020, 35(3): 251-255. |
[7] | WANG Huan, GAO Yuan, JIANG Linlin, ZHANG Hong. Morphological characteristics of bone marrow metastasis in children with common tumors [J]. Laboratory Medicine, 2019, 34(8): 701-703. |
[8] | ZHU Jianfeng, GUO Wei, PAN Baishen, WANG Beili. Characteristic of Auer rod-like inclusions in the cytoplasm of non-myeloid neoplasm cells [J]. Laboratory Medicine, 2019, 34(6): 526-529. |
[9] | WANG Xia, ZHANG Bin. Bone marrow cell morphology and immuno-phenotype characteristics of MPAL by flow cytometry [J]. Laboratory Medicine, 2019, 34(3): 235-239. |
[10] | ZHU Jianfeng, GUO Wei, PAN Baishen, WANG Beili. Role of bone marrow morphological examination in the bone marrow infiltration of non-Hodgkin's lymphoma [J]. Laboratory Medicine, 2019, 34(10): 885-888. |
[11] | HU Ying, LIANG Xiannian, YU Jianhong, QIN Lingyun, WANG Yuming. Y chromosome detection for an azoospermia patient after sex-mismatched bone marrow transplantation [J]. Laboratory Medicine, 2018, 33(2): 160-162. |
[12] | LIU Jinxiang, DING Yong, CAO Cuiyun, PAN Yan. Standard for judging the morphology of urinary red blood cells [J]. Laboratory Medicine, 2017, 32(7): 582-585. |
[13] | FAN Liquan, CHEN Weiqin, WANG Jianbiao, SHENG Yan, WU Jing. Cell morphology and immunophenotype in 12 patients of acute bilineage leukemia [J]. Laboratory Medicine, 2015, 30(5): 446-449. |
[14] | YANG Limiao, ZHANG Yaping, YANG Hongle, XING Jiangtao, HU Rui, ZHU Yun. Immunophenotyping and bone marrow hematology analysis in 55 cases of non-Hodgkin's lymphoma [J]. Laboratory Medicine, 2015, 30(2): 132-136. |
[15] | ZHOU Ping, TANG Jibin, JIAO Ruibao, ZHANG Wen, CAO Chunluan, CHONG Huifeng, ZHONG Weijun. Significance of comprehensive analysis on the diagnosis of myeloproliferative disease [J]. Laboratory Medicine, 2015, 30(1): 26-30. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||