Laboratory Medicine ›› 2025, Vol. 40 ›› Issue (1): 1-7.DOI: 10.3969/j.issn.1673-8640.2025.01.001
LIU Mengna1, WANG Hongling1, BAI Ping1, CAI Yu2, LI Li1(
)
Received:2024-05-15
Revised:2024-11-05
Online:2025-01-30
Published:2025-02-17
CLC Number:
LIU Mengna, WANG Hongling, BAI Ping, CAI Yu, LI Li. Research progress on laboratory diagnosis and treatment of ETP-ALL[J]. Laboratory Medicine, 2025, 40(1): 1-7.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2025.01.001
| 抗体名称 | 5抗体标记 | 6抗体标记 | 6抗体(1a)标记 | 7抗体标记 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| -1分 | 0分 | 1分 | -1分 | 1分 | -1分 | 1分 | -2分 | 0分 | 2分 | ||||
| CD5 | ≥75% | <75% | ≥75% | <75% | ≥5% | <5% | ≥75% | <75% | |||||
| CD8 | ≥5% | <5% | ≥5% | <5% | ≥5% | <5% | ≥5% | <5% | |||||
| CD13 | <20% | ≥20% | ≥25% | ≥25% | ≥25% | ≥75% | |||||||
| CD33 | <20% | ≥20% | ≥25% | ≥25% | ≥25% | ≥75% | |||||||
| CD34 | <20% | ≥20% | ≥25% | ≥25% | ≥25% | ≥75% | |||||||
| HLA-DR | ≥25% | ≥25% | ≥25% | ≥75% | |||||||||
| CD117 | ≥25% | ≥75% | |||||||||||
| 抗体名称 | 5抗体标记 | 6抗体标记 | 6抗体(1a)标记 | 7抗体标记 | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| -1分 | 0分 | 1分 | -1分 | 1分 | -1分 | 1分 | -2分 | 0分 | 2分 | ||||
| CD5 | ≥75% | <75% | ≥75% | <75% | ≥5% | <5% | ≥75% | <75% | |||||
| CD8 | ≥5% | <5% | ≥5% | <5% | ≥5% | <5% | ≥5% | <5% | |||||
| CD13 | <20% | ≥20% | ≥25% | ≥25% | ≥25% | ≥75% | |||||||
| CD33 | <20% | ≥20% | ≥25% | ≥25% | ≥25% | ≥75% | |||||||
| CD34 | <20% | ≥20% | ≥25% | ≥25% | ≥25% | ≥75% | |||||||
| HLA-DR | ≥25% | ≥25% | ≥25% | ≥75% | |||||||||
| CD117 | ≥25% | ≥75% | |||||||||||
| [1] |
ARBER D A, ORAZI A, HASSERJIAN R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J]. Blood, 2016, 127(20):2391-2405.
DOI PMID |
| [2] | COUSTAN-SMITH E, MULLIGHAN C G, ONCIU M, et al. Early T-cell precursor leukaemia:a subtype of very high-risk acute lymphoblastic leukaemia[J]. Lancet Oncol, 2009, 10(2):147-156. |
| [3] | CONTER V, VALSECCHI M G, BULDINI B, et al. Early T-cell precursor acute lymphoblastic leukaemia in children treated in AIEOP centres with AIEOP-BFM protocols:a retrospective analysis[J]. Lancet Haematol, 2016, 3(2):e80-6. |
| [4] | JAIN N, LAMB A V,O'BRIEN S,et al. Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL)in adolescents and adults:a high-risk subtype[J]. Blood, 2016, 127(15):1863-1869. |
| [5] | NEUMANN M, COSKUN E, FRANSECKY L, et al. FLT3 mutations in early T-cell precursor ALL characterize a stem cell like leukemia and imply the clinical use of tyrosine kinase inhibitors[J]. PLoS One, 2013, 8(1):e53190. |
| [6] |
KOCH U, RADTKE F. Mechanisms of T cell development and transformation[J]. Annu Rev Cell Dev Biol, 2011, 27:539-562.
DOI PMID |
| [7] | 公彦栋. 单细胞精度解析人类T淋巴细胞起源及胸腺器官发生[D]. 北京: 中国人民解放军军事科学院, 2020. |
| [8] |
LUC S, LUIS T C, BOUKARABILA H, et al. The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential[J]. Nat Immunol, 2012, 13(4):412-419.
DOI PMID |
| [9] | BELL J J, BHANDOOLA A. The earliest thymic progenitors for T cells possess myeloid lineage potential[J]. Nature, 2008, 452(7188):764-767. |
| [10] |
SAMBANDAM A, MAILLARD I, ZEDIAK V P, et al. Notch signaling controls the generation and differentiation of early T lineage progenitors[J]. Nat Immunol, 2005, 6(7):663-670.
PMID |
| [11] |
SCHLENNER S M, MADAN V, BUSCH K, et al. Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus[J]. Immunity, 2010, 32(3):426-436.
DOI PMID |
| [12] |
PAIVA R A, RAMOS C V, LEIRIA G, et al. IL-7 receptor drives early T lineage progenitor expansion[J]. J Immunol, 2022, 209(10):1942-1949.
DOI PMID |
| [13] | YE M T, WANG Y, ZUO Z, et al. Integrated clinical genotype-phenotype characteristics of early T-cell precursor acute lymphoblastic leukemia[J]. Cancer, 2023, 129(1):49-59. |
| [14] | CHANDRA D, SINGH M K, GUPTA R, et al. Clinicopathological and immunophenotypic features of early T cell precursor acute lymphoblastic leukaemia:a flow cytometry score for the initial diagnosis[J]. Int J Lab Hematol, 2021, 43(6):1417-1423. |
| [15] | RAHMAN K, SINGH P, CHANDRA D, et al. Early T-cell precursor acute lymphoblastic leukemia with Auer rods-a case report[J]. Int J Lab Hematol, 2020, 42(1):e27-e29. |
| [16] | GAJENDRA S, SACHDEV R, DORWAL P, et al. Mixed-phenotypic acute leukemia:cytochemically myeloid and phenotypically early T-cell precursor acute lymphoblastic leukemia[J]. Blood Res, 2014, 49(3):196-198. |
| [17] | MARBALLI BASAVARAJU D, MISHRA S, CHHABRA G, et al. Comparison of flowcytometry-based scoring system for the diagnosis of early T precursor-acute lymphoblastic leukemia[J]. Cytometry B Clin Cytom, 2023, 104(6):453-459. |
| [18] | KHOGEER H, RAHMAN H, JAIN N, et al. Early T precursor acute lymphoblastic leukaemia/lymphoma shows differential immunophenotypic characteristics including frequent CD33 expression and in vitro response to targeted CD33 therapy[J]. Br J Haematol, 2019, 186(4):538-548. |
| [19] | YOON J H, KIM H S, MIN G J, et al. Cytogenetic and molecular characteristics and outcomes of adult patients with early T-cell precursor acute lymphoblastic leukemia[J]. Eur J Haematol, 2023, 110(2):137-148. |
| [20] | KRISHNAN Y, S G, JOY A, et al. Childhood early T cell precursor acute lymphoblastic leukaemia with t(12;17)(p13;q21)translocation - a rare entity or part of ETP/myeloid mixed phenotype acute leukaemia[J]. Gulf J Oncolog, 2022, 1(40):78-82. |
| [21] | KAWASHIMA-GOTO S, IMAMURA T, TOMOYASU C, et al. BCL2 inhibitor (ABT-737):a restorer of prednisolone sensitivity in early T-cell precursor-acute lymphoblastic leukemia with high MEF2C expression?[J]. PLoS One, 2015, 10(7):e132926. |
| [22] | BALDUS C D, TANNER S M, RUPPERT A S, et al. BAALC expression predicts clinical outcome of de novo acute myeloid leukemia patients with normal cytogenetics:a cancer and leukemia group B study[J]. Blood, 2003, 102(5):1613-1618. |
| [23] | HEESCH S, SCHLEE C, NEUMANN M, et al. BAALC-associated gene expression profiles define IGFBP7 as a novel molecular marker in acute leukemia[J]. Leukemia, 2010, 24(8):1429-1436. |
| [24] | FANG H, WANG W, EL HUSSEIN S, et al. B-cell lymphoma/leukaemia 11B(BCL11B)expression status helps distinguish early T-cell precursor acute lymphoblastic leukaemia/lymphoma(ETP-ALL/LBL)from other subtypes of T-cell ALL/LBL[J]. Br J Haematol, 2021, 194(6):1034-1038. |
| [25] | LU B Y, THANAWALA S U, ZOCHOWSKI K C, et al. Decitabine enhances chemosensitivity of early T-cell precursor-acute lymphoblastic leukemia cell lines and patient-derived samples[J]. Leuk Lymphoma, 2016, 57(8):1938-1941. |
| [26] | FRANSECKY L, NEUMANN M, HEESCH S, et al. Silencing of GATA3 defines a novel stem cell-like subgroup of ETP-ALL[J]. J Hematol Oncol, 2016, 9(1):95. |
| [27] | ZHANG J, DING L, HOLMFELDT L, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia[J]. Nature, 2012, 481(7380):157-163. |
| [28] | XIAO J, CAI Z, WANG H, et al. The clinical characteristics and prognosis of AYA and older adult ETP-ALL/LBL:a real-world multicenter study in China[J]. Front Oncol, 2022, 12:846573. |
| [29] | ZUURBIER L, GUTIERREZ A, MULLIGHAN C G, et al. Immature MEF2C-dysregulated T-cell leukemia patients have an early T-cell precursor acute lymphoblastic leukemia gene signature and typically have non-rearranged T-cell receptors[J]. Haematologica, 2014, 99(1):94-102. |
| [30] | ALEXANDER T B, GU Z, IACOBUCCI I, et al. The genetic basis and cell of origin of mixed phenotype acute leukaemia[J]. Nature, 2018, 562(7727):373-379. |
| [31] | NEUMANN M, HEESCH S, GÖKBUGET N, et al. Clinical and molecular characterization of early T-cell precursor leukemia:a high-risk subgroup in adult T-ALL with a high frequency of FLT3 mutations[J]. Blood Cancer J, 2012, 2(1):e55. |
| [32] | NEUMANN M, HEESCH S, SCHLEE C, et al. Whole-exome sequencing in adult ETP-ALL reveals a high rate of DNMT3A mutations[J]. Blood, 2013, 121(23):4749-4752. |
| [33] | LO NIGRO L, ANDRIANO N, BULDINI B, et al. FLT3-ITD in children with early T-cell precursor (ETP)acute lymphoblastic leukemia:incidence and potential target for monitoring minimal residual disease(MRD)[J]. Cancers (Basel), 2022, 14(10):2475. |
| [34] | NORONHA E P, MARQUES L V C, ANDRADE F G, et al. T-lymphoid/myeloid mixed phenotype acute leukemia and early T-cell precursor lymphoblastic leukemia similarities with NOTCH1 mutation as a good prognostic factor[J]. Cancer Manag Res, 2019, 11:3933-3943. |
| [35] | TARIQ H, SHETTY S. Emerging necessity of myeloid mutational analysis in early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL)[J]. Turk J Haematol, 2023, 40(3):227-229. |
| [36] | XUE S L, WU D P, SUN A N, et al. CAG regimen enables relapsed or refractory T-cell acute lymphocytic leukemia patients to achieve complete remission:a report of six cases[J]. Am J Hematol, 2008, 83(2):167-170. |
| [37] | QIAN J J, HU X, WANG Y, et al. CAG regimen for refractory or relapsed adult T-cell acute lymphoblastic leukemia:a retrospective,multicenter,cohort study[J]. Cancer Med, 2020, 9(15):5327-5334. |
| [38] |
BHATLA T, WANG J, MORRISON D J, et al. Epigenetic reprogramming reverses the relapse-specific gene expression signature and restores chemosensitivity in childhood B-lymphoblastic leukemia[J]. Blood, 2012, 119(22):5201-5210.
DOI PMID |
| [39] | MENG T, YAO Y, XU Y, et al. Salvage therapy with decitabine in combination with granulocyte colony-stimulating factor,low-dose cytarabine,and aclarubicin in patients with refractory or relapsed early T-cell precursor acute lymphoblastic leukemia[J]. Hematol Oncol, 2020, 38(5):834-837. |
| [40] |
BORAH P, DAYAL N, PATHAK S, et al. Short-course venetoclax with standard chemotherapy is effective in early T-cell precursor acute lymphoblastic leukemia[J]. J Pediatr Hematol Oncol, 2023, 45(5):271-274.
DOI PMID |
| [41] | NUMAN Y, ALFAYEZ M, MAITI A, et al. First report of clinical response to venetoclax in early T-cell precursor acute lymphoblastic leukemia[J]. JCO Precis Oncol, 2018, 2:127. |
| [42] | ARORA S, VACHHANI P, BACHIASHVILI K, et al. Venetoclax with chemotherapy in relapse/refractory early T-cell precursor acute lymphoblastic leukemia[J]. Leuk Lymphoma, 2021, 62(9):2292-2294. |
| [43] | TREMBLAY C S, SAW J, BOYLE J A, et al. STAT5 activation promotes progression and chemotherapy resistance in early T-cell precursor acute lymphoblastic leukemia[J]. Blood, 2023, 142(3):274-289. |
| [44] | MAUDE S L, DOLAI S, DELGADO-MARTIN C, et al. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP)acute lymphoblastic leukemia[J]. Blood, 2015, 125(11):1759-1767. |
| [45] | BATALLER A, GARROTE M, OLIVER-CALDÉS A, et al. Early T-cell precursor lymphoblastic leukaemia:response to FLAG-IDA and high-dose cytarabine with sorafenib after initial refractoriness[J]. Br J Haematol, 2019, 185(4):755-757. |
| [1] | WANG Hongling, CAI Yu, LIU Mengna, BAI Ping. Clinical characteristic analysis of ETP-ALL patients with POX positive rate>3% [J]. Laboratory Medicine, 2025, 40(1): 20-24. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||