Laboratory Medicine ›› 2024, Vol. 39 ›› Issue (9): 880-887.DOI: 10.3969/j.issn.1673-8640.2024.09.011
Previous Articles Next Articles
GUO Chaonan1, WANG Yanyan1, ZHANG Bei1, PANG Jingying2, CUI Feifei2, ZHAO Yongxin1, SU Bing1
Received:
2023-07-14
Revised:
2024-02-01
Online:
2024-09-30
Published:
2024-10-15
CLC Number:
GUO Chaonan, WANG Yanyan, ZHANG Bei, PANG Jingying, CUI Feifei, ZHAO Yongxin, SU Bing. Analysis of drug resistance and virulence of Klebsiella pneumoniae from different clinical samples[J]. Laboratory Medicine, 2024, 39(9): 880-887.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2024.09.011
毒力基因/血清型 | 敏感抗菌药物 | P值① |
---|---|---|
痰液 | ||
iroN | 头孢唑啉、庆大霉素、头孢吡肟、氨苄西林-舒巴坦、环丙沙星、复方磺胺甲噁唑、左氧氟沙星 | <0.001 |
rmpA | 氨苄西林-舒巴坦 | 0.044 |
K2 | 环丙沙星 | 0.022 |
尿液 | ||
mrkD | 庆大霉素 | 0.043 |
iroN | 头孢唑啉、庆大霉素、头孢吡肟、氨苄西林-舒巴坦、环丙沙星、 复方磺胺甲噁唑、左氧氟沙星 | 0.013、0.041、0.006、0.001、0.010、0.007、0.014 |
rmpA | 氨苄西林-舒巴坦 | 0.025 |
K2 | 环丙沙星、氨苄西林-舒巴坦、复方磺胺甲噁唑、左氧氟沙星 | 0.010、0.025、0.039、0.025 |
K1 | 氨苄西林-舒巴坦、复方磺胺甲噁唑 | 0.002、0.039 |
血液 | ||
rmpA | 头孢他啶、头孢吡肟、氨苄西林-舒巴坦、复方磺胺甲噁唑 | 0.035、0.018、0.006、0.041 |
iucA | 复方磺胺甲噁唑 | 0.022 |
iroN | 头孢他啶、头孢吡肟、氨苄西林-舒巴坦、复方磺胺甲噁唑、环丙沙星 | 0.035、0.018、0.006、0.041、0.038 |
毒力基因/血清型 | 敏感抗菌药物 | P值① |
---|---|---|
痰液 | ||
iroN | 头孢唑啉、庆大霉素、头孢吡肟、氨苄西林-舒巴坦、环丙沙星、复方磺胺甲噁唑、左氧氟沙星 | <0.001 |
rmpA | 氨苄西林-舒巴坦 | 0.044 |
K2 | 环丙沙星 | 0.022 |
尿液 | ||
mrkD | 庆大霉素 | 0.043 |
iroN | 头孢唑啉、庆大霉素、头孢吡肟、氨苄西林-舒巴坦、环丙沙星、 复方磺胺甲噁唑、左氧氟沙星 | 0.013、0.041、0.006、0.001、0.010、0.007、0.014 |
rmpA | 氨苄西林-舒巴坦 | 0.025 |
K2 | 环丙沙星、氨苄西林-舒巴坦、复方磺胺甲噁唑、左氧氟沙星 | 0.010、0.025、0.039、0.025 |
K1 | 氨苄西林-舒巴坦、复方磺胺甲噁唑 | 0.002、0.039 |
血液 | ||
rmpA | 头孢他啶、头孢吡肟、氨苄西林-舒巴坦、复方磺胺甲噁唑 | 0.035、0.018、0.006、0.041 |
iucA | 复方磺胺甲噁唑 | 0.022 |
iroN | 头孢他啶、头孢吡肟、氨苄西林-舒巴坦、复方磺胺甲噁唑、环丙沙星 | 0.035、0.018、0.006、0.041、0.038 |
[1] | RUSSO T A, MARR C M. Hypervirulent Klebsiella pneumoniae[J]. Clin Microbiol Rev, 2019, 32(3):e00001-e00019. |
[2] | MA Y X, WANG C Y, LI Y Y, et al. Considerations and caveats in combating ESKAPE pathogens against nosocomial infections[J]. Adv Sci(Weinh), 2019, 7(1):1901872. |
[3] | TURTON J, DAVIES F, TURTON J, et al. Hybrid resistance and virulence plasmids in"high-risk"clones of Klebsiella pneumoniae,including those carrying blaNDM-5[J]. Microorganisms, 2019, 7(9):326. |
[4] | HOLT K E, WERTHEIM H, ZADOKS R N, et al. Genomic analysis of diversity,population structure,virulence and antimicrobial resistance in Klebsiella pneumoniae:an urgent threat to public health[J]. Proc Natl Acad Sci U S A, 2015, 112(27):E3574-E3581. |
[5] | RUSSO T A, OLSON R, FANG C T, et al. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae[J]. J Clin Microbiol, 2018, 56(9):e00776. |
[6] | 刘姝灵. 肺炎克雷伯菌胞外多糖广谱抗生物膜活性研究[D]. 衡阳: 南华大学, 2021. |
[7] | SANTAJIT S, SOOKRUNG N, INDRAWATTANA N. Quorum sensing in ESKAPE bugs:a target for combating antimicrobial resistance and bacterial virulence[J]. Biology(Basel), 2022, 11(10):1466. |
[8] | 张永州, 吕维玲, 寇洁健, 等. 2020—2021年医院感染病原菌分布及耐药性分析[J]. 中国病原生物学杂志, 2022, 17(10):1192-1198. |
[9] |
胡付品, 郭燕, 朱德妹, 等. 2021年CHINET中国细菌耐药监测[J]. 中国感染与化疗杂志, 2022, 22(5):521-530.
DOI |
[10] | European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA(EARS-Net)-annual epidemiological report for 2021[EB/OL].(2022-11-17)[2023-01-01]. https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2021. |
[11] | World Health Organization. Global antimicrobial resistance and use surveillance system(GLASS)report:2022[EB/OL].(2022-12-09)[2023-01-03]. https://www.who.int/publications/i/item/9789240062702. |
[12] | FATIMA S, LIAQAT F, AKBAR A, et al. Virulent and multidrug-resistant Klebsiella pneumoniae from clinical samples in Balochistan[J]. Int Wound J, 2021, 18(4):510-518. |
[13] | TANEJA J, MISHRA B, THAKUR A, et al. Nosocomial blood-stream infections from extended-spectrum-beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae from GB pant hospital,New Delhi[J]. J Infect Dev Ctries, 2010, 4(8):517-520. |
[14] | 李耘, 郑波, 吕媛, 等. 中国细菌耐药监测(CARST)研究2019-2020革兰氏阴性菌监测报告[J]. 中国临床药理学杂志, 2022, 38(5):432-452. |
[15] | LEE X J, STEWARDSON A J, WORTH L J, et al. Attributable length of stay,mortality risk,and costs of bacterial health care-associated infections in Australia:a retrospective case-cohort study[J]. Clin Infect Dis, 2021, 72(10):e506-e514. |
[16] | FU L, HUANG M, ZHANG X, et al. Frequency of virulence factors in high biofilm formation blaKPC-2 producing Klebsiella pneumoniae strains from hospitals[J]. Microb Pathog, 2018,116:168-172. |
[17] | MURPHY C N, MORTENSEN M S, KROGFELT K A, et al. Role of Klebsiella pneumoniae type 1 and type 3 fimbriae in colonizing silicone tubes implanted into the bladders of mice as a model of catheter-associated urinary tract infections[J]. Infect Immun, 2013, 81(8):3009-3017. |
[18] | SOTO E, DENNIS M M, BEIERSCHMITT A, et al. Biofilm formation of hypermucoviscous and non-hypermucoviscous Klebsiella pneumoniae recovered from clinically affected African green monkey(Chlorocebus aethiops sabaeus)[J]. Microb Pathog, 2017,107:198-201. |
[19] | CANDAN E D, AKSÖZ N. Klebsiella pneumoniae:characteristics of carbapenem resistance and virulence factors[J]. Acta Biochim Pol, 2015, 62(4):867-874. |
[20] | SHIN J, KO K S. Comparative study of genotype and virulence in CTX-M-producing and non-extended-spectrum-β-lactamase-producing Klebsiella pneumoniae isolates[J]. Antimicrob Agents Chemother, 2014, 58(4):2463-2467. |
[21] | HEIDEN S E, HÜBNER N O, BOHNERT J A, et al. A Klebsiella pneumoniae ST307 outbreak clone from Germany demonstrates features of extensive drug resistance,hypermucoviscosity,and enhanced iron acquisition[J]. Genome Med, 2020, 12(1):113. |
[22] | RUSSO T A, SHON A S, BEANAN J M, et al. Hypervirulent K. pneumoniae secretes more and more active iron-acquisition molecules than“classical”K. pneumoniae thereby enhancing its virulence[J]. PLoS One, 2011, 6(10):e26734. |
[23] | BALLÉN V, GABASA Y, RATIA C, et al. Antibiotic resistance and virulence profiles of Klebsiella pneumoniae strains isolated from different clinical sources[J]. Front Cell Infect Microbiol, 2021,11:738223. |
[24] | LAM M M C, WICK R R, WYRES K L, et al. Genetic diversity,mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations[J]. Microb Genom, 2018, 4(9): e000196. |
[25] | YAN Q, ZHOU M, ZOU M, et al. Hypervirulent Klebsiella pneumoniae induced ventilator-associated pneumonia in mechanically ventilated patients in China[J]. Eur J Clin Microbiol Infect Dis, 2016, 35(3):387-396. |
[26] | JUNG S G, JANG J H, KIM A Y, et al. Removal of pathogenic factors from 2,3-butanediol-producing Klebsiella species by inactivating virulence-related wabG gene[J]. Appl Microbiol Biotechnol, 2013, 97(5):1997-2007. |
[1] | WANG Yawen, ZHANG Yingying, NIU Wenyan. Influence of glycated hemoglobin A1c on pathogens of urinary tract infection in patients with type 2 diabetes mellitus [J]. Laboratory Medicine, 2024, 39(9): 895-899. |
[2] | HUANG Linling, XU Meirong, SHEN Xiaowen, GU LingLi, SHEN Hongmei. Changes and significance of autophagy in peripheral blood lymphocytes of patients with carbapenem-resistant Enterobacteriaceae-bloodstream infection [J]. Laboratory Medicine, 2024, 39(8): 759-763. |
[3] | ZHANG Jialing, QI Jun. Interference and correction of chylemia on blood cell analysis parameters in tumor patients [J]. Laboratory Medicine, 2024, 39(8): 770-773. |
[4] | ZHANG Jing. Synergistic role of vitamin D and blood glucose in pregnancy outcomes in patients with preeclampsia [J]. Laboratory Medicine, 2024, 39(8): 779-786. |
[5] | HUANG Ying, ZHOU Ying, SONG Yunxiao, MAO Junjie, GUAN Chao, ZHAO Jinyan, NI Peiqing. Pulmonary tuberculosis diagnosis model for blood routine test based on machine learning algorithms [J]. Laboratory Medicine, 2024, 39(7): 668-672. |
[6] | ZHAO Chunhe, SHAO Huihui, CUI Weiqi, XIA Wei, QU Linlin. Progress in application of blood coagulation point-of-care testing [J]. Laboratory Medicine, 2024, 39(7): 709-714. |
[7] | YANG Huilin, CHEN Juan, YAN Jinjin, OU Jiawen, WEN Mingming, ZHOU Lina. Analysis of 4 blood culture bottles' adsorption capacity to 4 commonly used antibiotics [J]. Laboratory Medicine, 2024, 39(6): 578-582. |
[8] | WU Xinzhe, MAO Haifeng, YANG Jin, ZUO Chunlei, JIN Danting. Clinical application of MALDI-TOF direct droplet culture method in rapid determination of CRKP [J]. Laboratory Medicine, 2024, 39(6): 587-591. |
[9] | SUN Miaoli, WU Qiong, WANG Yingzhi, WANG Jianqiang, GAO Feng, TANG Jin. Research progress on determination and treatment of carbapenem-resistant Klebsiella pneumoniae [J]. Laboratory Medicine, 2024, 39(6): 615-620. |
[10] | MA Liyuan, YU Xiaohui, ZHANG Ningyu. Relation between peripheral blood cell score combined with IL-32 and prognosis of patients undergoing surgical treatment for multiple myeloma [J]. Laboratory Medicine, 2024, 39(5): 458-463. |
[11] | WANG Xuqin, LIN Qianru, FENG Wanqing, DONG Yuan, YU Xiaolei, LIU Changhe, NING Zhen, SHEN Xin, PAN Qichao, LIN Yi. Validation of HIV-1 integrase genotyping sequence assay [J]. Laboratory Medicine, 2024, 39(4): 369-375. |
[12] | HUANG Lei, TANG Wenjia, ZHOU Yan, ZHOU Jiaye, ZHANG Chunyan, YANG Jing, WANG Beili, PAN Baishen, GUO wei. Prognosis of RDW-SD and RDW-CV in breast cancer patients with lymphatic metastasis [J]. Laboratory Medicine, 2024, 39(4): 376-381. |
[13] | ZHAO Yanan, XIAO Weili, CAO Qixin, YAN Yan, CUI Xiuge, ZHAO Jianping. Relation of drug resistance,serotypes and genotypes of Group B Streptococcus in perinatal pregnant females and pregnancy outcomes [J]. Laboratory Medicine, 2024, 39(4): 382-386. |
[14] | DUAN Xuehan, WU Hua. Application of MALDI-TOF MS technology in clinical microbiological examination [J]. Laboratory Medicine, 2024, 39(4): 410-414. |
[15] | LIU Mengzhu, GU Jinyun, ZHU Xia, CHEN Xia. Predictive value of glucose variability parameters before delivery for macrosomia in patients with gestational diabetes mellitus [J]. Laboratory Medicine, 2024, 39(3): 215-221. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||