Laboratory Medicine ›› 2024, Vol. 39 ›› Issue (6): 615-620.DOI: 10.3969/j.issn.1673-8640.2024.06.018
SUN Miaoli, WU Qiong, WANG Yingzhi, WANG Jianqiang, GAO Feng, TANG Jin()
Received:
2023-04-19
Revised:
2023-09-20
Online:
2024-06-30
Published:
2024-07-08
CLC Number:
SUN Miaoli, WU Qiong, WANG Yingzhi, WANG Jianqiang, GAO Feng, TANG Jin. Research progress on determination and treatment of carbapenem-resistant Klebsiella pneumoniae[J]. Laboratory Medicine, 2024, 39(6): 615-620.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2024.06.018
[1] | YANG X, DONG N, CHAN E W, et al. Carbapenem resistance-encoding and virulence encoding conjugative plasmids in Klebsiella pneumoniae[J]. Trends Microbiol, 2021, 29(1):65-83. |
[2] | LEE C R, LEE J H, PARK K S, et al. Antimicrobial resistance of hypervirulent Klebsiella pneumoniae:epidemiology,hypervirulence-associated determinants,and resistance mechanisms[J]. Front Cell Infect Microbiol, 2017, 7:483. |
[3] | 胡付品, 郭燕, 朱德妹, 等. 2021年CHINET中国细菌耐药监测[J]. 中国感染与化疗杂志, 2022, 22(05):521-530. |
[4] | BIALEK-DAVENET S, CRISCUOLO A, AILLOUD F, et al. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups[J]. Emerg Infect Dis, 2014, 20(11):1812-1820. |
[5] | WYRES K L, WICK R R, JUDD L M, et al. Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of Klebsiella pneumoniae[J]. PLoS Genet, 2019, 15(4):e1008114. |
[6] | GU D, DONG N, ZHENG Z, et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital:a molecular epidemiological study[J]. Lancet Infect Dis, 2018, 18(1):37-46. |
[7] | NAVON-VENEZIA S, LEAVITT A, SCHWABER M J, et al. First report on a hyperepidemic clone of KPC-3-producing Klebsiella pneumoniae in Israel genetically related to a strain causing outbreaks in the United States[J]. Antimicrob Agents Chemother, 2009, 53(2):818-820. |
[8] | PAVEZ M, MAMIZUKA E M, LINCOPAN N. Early dissemination of KPC-2-producing Klebsiella pneumoniae strains in Brazil[J]. Antimicrob Agents Chemother, 2009, 53(6):2702. |
[9] | LIU P, LI X, LUO M, et al. Risk factors for carbapenem-resistant Klebsiella pneumoniae infection:a meta-analysis[J]. Microb Drug Resist, 2018, 24(2):190-198. |
[10] | ZHANG R, LIU L, ZHOU H, et al. Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae(CRE)strains in China[J]. E Bio Medicine, 2017, 19:98-106. |
[11] | TACCONELLI E, CARRARA E, SAVOLDI A, et al. Discovery,research,and development of new antibiotics:the WHO priority list of antibiotic-resistant bacteria and tuberculosis[J]. Lancet Infect Dis, 2018, 18(3):318-327. |
[12] | WANG Z, QIN R R, HUANG L, et al. Risk factors for carbapenem-resistant Klebsiella pneumoniae infection and mortality of Klebsiella pneumoniae infection[J]. Chin Med J(Engl), 2018, 131(1):56-62. |
[13] | ZHOU C, JIN L, WANG Q, et al. Bloodstream infections caused by carbapenem-resistant Enterobacterales:risk factors for mortality,antimicrobial therapy and treatment outcomes from a prospective multicenter study[J]. Infect Drug Resist, 2021, 14:731-742. |
[14] | BARTSCH S M, MCKINNELL J A, MUELLER L E, et al. Potential economic burden of carbapenem-resistant Enterobacteriaceae(CRE)in the United States[J]. Clin Microbiol Infect, 2017, 23(1):48.e9-48.e16. |
[15] | WANG M, EARLEY M, CHEN L, et al. Clinical outcomes and bacterial characteristics of carbapenem-resistant Klebsiella pneumoniae complex among patients from different global regions(CRACKLE-2):a prospective,multicentre,cohort study[J]. Lancet Infect Dis, 2022, 22(3):401-12. |
[16] | TANG M, KONG X, HAO J, et al. Epidemiological characteristics and formation mechanisms of multidrug-resistant hypervirulent Klebsiella pneumoniae[J]. Frontiers Microbiol, 2020, 11:581543. |
[17] | YANG X, SUN Q, LI J, et al. Molecular epidemiology of carbapenem-resistant hypervirulent Klebsiella pneumoniae in China[J]. Emerg Microbes Infect, 2022, 11(1):841-849. |
[18] | POIREL L, HÉRITIER C, TOLÜN V, et al. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae[J]. Antimicrob Agents Chemother, 2004, 48(1):15-22. |
[19] | MOUFTAH S F, PÁL T, HIGGINS P G, et al. Diversity of carbapenem-resistant Klebsiella pneumoniae ST14 and emergence of a subgroup with KL64 capsular locus in the Arabian Peninsula[J]. Eur J Clin Microbiol Infect Dis, 2021,2. |
[20] | UZ ZAMAN T, ALDREES M, AL JOHANI S M, et al. Multi-drug carbapenem-resistant Klebsiella pneumoniae infection carrying the OXA-48 gene and showing variations in outer membrane protein 36 causing an outbreak in a tertiary care hospital in Riyadh,Saudi Arabia[J]. Int J Infect Dis, 2014, 28:186-192. |
[21] | LI X Z, PLÉSIAT P, NIKAIDO H. The challenge of efflux-mediated antibiotic resistance in gram-negative bacteria[J]. Clin Microbiol Rev, 2015, 28(2):337-418. |
[22] | DELL'ANNUNZIATA F,DELL'AVERSANA C,DOTI N,et al. Outer membrane vesicles derived from Klebsiella pneumoniae are a driving force for horizontal gene transfer[J]. Int J Mol Sci, 2021, 22(16):8732. |
[23] |
喻华, 徐雪松, 李敏, 等. 肠杆菌目细菌碳青霉烯酶的实验室检测和临床报告规范专家共识(第二版)[J]. 中国感染与化疗杂志, 2022, 22(4):463-474.
DOI |
[24] | PIERCE V M, SIMNER P J, LONSWAY D R, et al. Modified carbapenem inactivation method for phenotypic detection of carbapenemase production among Enterobacteriaceae[J]. J Clin Microbiol, 2017, 55(8):2321-2333. |
[25] | HOWARD J C, CREIGHTON J, IKRAM R, et al. Comparison of the performance of three variations of the carbapenem inactivation method(CIM,modified CIM [mCIM] and in-house method(iCIM))for the detection of carbapenemase-producing Enterobacterales and non-fermenters[J]. J Glob Antimicrob Resist, 2020, 21:78-82. |
[26] | TSAI Y M, WANG S, CHIU H C, et al. Combination of modified carbapenem inactivation method(mCIM)and EDTA -CIM(eCIM)for phenotypic detection of carbapenemase-producing Enterobacteriaceae[J]. BMC Microbiol, 2020, 20(1):315. |
[27] | DORTET L, POIREL L, NORDMANN P. Rapid identification of carbapenemase types in Enterobacteriaceae and Pseudomonas spp. by using a biochemical test[J]. Antimicrob Agents Chemother, 2012, 56(12):6437-6440. |
[28] | MANCINI S, KIEFFER N, POIREL L, et al. Evaluation of the RAPIDEC® CARBA NP and β-CARBA® tests for rapid detection of carbapenemase-producing Enterobacteriaceae[J]. Diagn Microbiol Infect Dis, 2017, 88(4):293-297. |
[29] | TSUCHIDA S, UMEMURA H, NAKAYAMA T. Current status of matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry(MALDI-TOF MS)in clinical diagnostic microbiology[J]. Molecules, 2020, 25(20):4775. |
[30] | PAPAGIANNITSIS C C, ŠTUDENTOVÁ V, IZDEBSKI R, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry meropenem hydrolysis assay with NH4HCO3,a reliable tool for direct detection of carbapenemase activity[J]. J Clin Microbiol, 2015, 53(5):1731-1735. |
[31] | YU J, LIU J, LI Y, et al. Rapid detection of carbapenemase activity of Enterobacteriaceae isolated from positive blood cultures by MALDI-TOF MS[J]. Ann Clin Microbiol Antimicrob, 2018, 17(1):22. |
[32] | GU D, YAN Z, CAI C, et al. Comparison of the NG-Test Carba 5,colloidal gold immunoassay(CGI)test,and Xpert Carba-R for the rapid detection of carbapenemases in car bapenemase-producing organisms[J]. Antibiotics(Basel), 2023, 12(2):300. |
[33] | CODJOE F S, DONKOR E S. Carbapenem resistance:a review[J]. Med Sci(Basel), 2017, 6(1):1. |
[34] | SMITH C J, OSBORN A M. Advantages and limitations of quantitative PCR(Q-PCR)-based approaches in microbial ecology[J]. FEMS Microbiol Ecol, 2009, 67(1):6-20. |
[35] | CAI Z, TAO J, JIA T, et al. Multicenter evaluation of the Xpert Carba-R assay for detection and identification of carbapenemase genes in sputum specimens[J]. J Clin Microbiol, 2020, 58(9):e00644. |
[36] | MOUBARECK CA, HAMMOUDI HALAT D, SARTAWI M, et al. Assessment of the performance of CHROMagar KPC and Xpert Carba-R assay for the detection of carbapenem-resistant bacteria in rectal swabs:first comparative study from Abu Dhabi,United Arab Emirates[J]. J Glob Antimicrob Resist, 2020, 20:147-152. |
[37] | MCMULLEN A R, YARBROUGH M L, WALLACE M A, et al. Evaluation of genotypic and phenotypic methods to detect carbapenemase production in gram-negative Bacilli[J]. Clin Chem, 2017, 63(3):723-730. |
[38] |
AMAN R, MAHAS A, MAHFOUZ M. Nucleic acid detection using CRISPR/Cas biosensing technologies[J]. ACS Synth Biol, 2020, 9(6):1226-1233.
DOI PMID |
[39] |
LI Y, LI S, WANG J, et al. CRISPR/Cas systems towards next-generation biosensing[J]. Trends Biotechnol, 2019, 37(7):730-743.
DOI PMID |
[40] |
XU H, TANG H, LI R, et al. A new method based on LAMP-CRISPR-Cas12a-lateral flow immunochromatographic strip for detection[J]. Infect Drug Resist, 2022, 15:685-696.
DOI PMID |
[41] | CHEN Y, HUANG H B, PENG J M, et al. Efficacy and safety of ceftazidime-avibactam for the treatment of carbapenem-resistant Enterobacterales bloodstream infection:a systematic review and meta-analysis[J]. Microbiol Spectr, 2022, 10(2):e0260321. |
[42] | VAN DUIN D, LOK J J, EARLEY M, et al. Colistin versus ceftazidime-avibactam in the treatment of infections due to carbapenem-resistant Enterobacteriaceae[J]. Clin Infect Dis, 2018, 66(2):163-171. |
[43] | TUMBARELLO M, TRECARICHI E M, CORONA A, et al. Efficacy of ceftazidime-avibactam salvage therapy in patients with infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae[J]. Clin Infect Dis, 2019, 68(3):355-364. |
[44] | ZHANEL G G, LAWRENCE C K, ADAM H, et al. Imipenem-relebactam and meropenem-vaborbactam:two novel carbapenem-β-lactamase inhibitor combinations[J]. Drugs, 2018, 78(1):65-98. |
[45] | MANSOUR H, OUWEINI A E L, CHAHINE E B, et al. Imipenem/cilastatin/relebactam:a new carbapenem β-lactamase inhibitor combination[J]. Am J Health Syst Pharm, 2021, 78(8):674-683. |
[46] | PEREIRA C, COSTA P, DUARTE J, et al. Phage therapy as a potential approach in the biocontrol of pathogenic bacteria associated with shellfish consumption[J]. Int J Food Microbiol, 2021, 338:108995. |
[47] | DUC H M, SON H M, YI H P S, et al. Isolation,characterization and application of a polyvalent phage capable of controlling Salmonella and Escherichia coli O157:H7 in different food matrices[J]. Food Res Int, 2020, 131:108977. |
[48] |
TAMMA P D, COSGROVE S E, MARAGAKIS L L. Combination therapy for treatment of infections with gram-negative bacteria[J]. Clin Microbiol Rev, 2012, 25(3):450-470.
DOI PMID |
[49] | ESKENAZI A, LOOD C, WUBBOLTS J, et al. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae[J]. Nat Commun, 2022, 13(1):302. |
[50] | BAO J, WU N, ZENG Y, et al. Non-active antibiotic and bacteriophage synergism to successfully treat recurrent urinary tract infection caused by extensively drug-resistant Klebsiella pneumoniae[J]. Emerg Microbes Infect, 2020, 9(1):771-774. |
[51] | OECHSLIN F. Resistance development to bacteriophages occurring during bacteriophage therapy[J]. Viruses, 2018, 10(7):351. |
[52] | CHOI M, TENNANT S M, SIMON R, et al. Progress towards the development of Klebsiella vaccines[J]. Expert Rev Vaccines, 2018, 18(7):681-691. |
[53] | MARTIN R M, BACHMAN M A. Colonization,infection,and the accessory genome of Klebsiella pneumoniae[J]. Front Cell Infect Microbiol, 2018, 8:4. |
[54] | FOLLADOR R, HEINZ E, WYRES K L, et al. The diversity of Klebsiella pneumoniae surface polysaccharides[J]. Microb Genom, 2016, 2(8):e000073. |
[55] | WANG Q, CHANG C S, PENNINI M, et al. Target-agnostic identification of functional monoclonal antibodies against Klebsiella pneumoniae multimeric MrkA fimbrial subunit[J]. J Infect Dis, 2016, 213(11):1800-1808. |
[1] | LI Xiaohan, LI Dongdong. Infectious disease screen test project cut-off value verification scheme and its significance [J]. Laboratory Medicine, 2024, 39(7): 700-703. |
[2] | WU Xinzhe, MAO Haifeng, YANG Jin, ZUO Chunlei, JIN Danting. Clinical application of MALDI-TOF direct droplet culture method in rapid determination of CRKP [J]. Laboratory Medicine, 2024, 39(6): 587-591. |
[3] | Laboratory Medicine Branch of Chinese Association of Geriatric Health Medicine Research, the Laboratory Medicine Committee of Shanghai Scientific Association of Better Birth and Better Upbringing (Shanghai Maternal and Child Health Association). Expert consensus on establishment and validation of review rules for automatic vaginal secretion analysis system [J]. Laboratory Medicine, 2024, 39(5): 415-422. |
[4] | WANG Xuqin, LIN Qianru, FENG Wanqing, DONG Yuan, YU Xiaolei, LIU Changhe, NING Zhen, SHEN Xin, PAN Qichao, LIN Yi. Validation of HIV-1 integrase genotyping sequence assay [J]. Laboratory Medicine, 2024, 39(4): 369-375. |
[5] | YU Feng, HU Longhua, XIAO Yanping, YANG Junping. Virulence genes and molecular characteristics of Klebsiella pneumoniae isolated from bloodstream infection patients [J]. Laboratory Medicine, 2024, 39(3): 249-255. |
[6] | JIANG Haoqin, XU Qianqian, XU Liming, GUAN Ming. Homogenization management and practice of clinical blood and body fluid determinations [J]. Laboratory Medicine, 2024, 39(1): 95-99. |
[7] | MIAO Xingguo, YE Hui, SU Feifei. Relationship between GeneXpert MTB/RIF assay determination load and Mycobacterium tuberculosis culture and phenotype of rifampicin resistance [J]. Laboratory Medicine, 2023, 38(9): 874-877. |
[8] | YANG Xue, ZHU Jun, JIANG Lingli, WANG Qing, HU Xiaobo. Evaluation on the consistency of blind sample test results of 9 SARS-CoV-2 nucleic acid determination kits in Shanghai,China [J]. Laboratory Medicine, 2023, 38(8): 776-780. |
[9] | SUN Zepeng, WANG Hongbin, WANG Jiandong, SONG Dewei, XIAO Peng. Analysis and progress of peptide and protein biomarker methodology for myocardial injury [J]. Laboratory Medicine, 2023, 38(8): 784-789. |
[10] | TAN Chunyan, ZHOU Ying, MO Zhijiang. Errors in Appendix B examples of WS/T 505—2017 and correction [J]. Laboratory Medicine, 2023, 38(6): 569-573. |
[11] | WU Youhong, SONG Yunxiao, ZHU Yong, GE Wen, BIAN Xiaobo, YUAN Wenhua, ZHAO Zhiyun. Role of blood lipid levels in assessment of coronary artery stenosis and its treatment in patients with coronary heart disease [J]. Laboratory Medicine, 2023, 38(6): 584-589. |
[12] | ZHU Yurong, ZHANG Dan, HE Yaxing, LI Jingjing, HUANG Jing, LI Ting, LIU Peng, LIU Ronghua. Classification and epidemiology characteristics of Klebsiella pneumoniae isolated from clinic [J]. Laboratory Medicine, 2023, 38(5): 435-440. |
[13] | WANG Jiawei, ZHU Weinan, CHEN Yingying, JI Ping, WANG Ying. Clinical characteristics,molecular typing and drug resistance genes of carbapenem-resistant Klebsiella pneumoniae isolated from blood culturing [J]. Laboratory Medicine, 2023, 38(4): 362-367. |
[14] | CHEN Zhe, ZHANG Ling, LIU Jie, WANG Xia, ZHANG Bin, GAO Binghua. Relationship between serum miR-326 and chemotherapy sensitivity and prognosis in patients with treatment-related hematological malignancy [J]. Laboratory Medicine, 2023, 38(3): 251-256. |
[15] | ZENG Yanfen, WU Quanming, ZHOU Huan, ZHANG Qiuqin, KANG Yanli, LI Yao, CHEN Xijun, HUANG Jiangang, CHEN Falin. Determination limits of a severe acute respiratory syndrome coronavirus 2 nucleic acid determination reagent in 4 determination systems [J]. Laboratory Medicine, 2023, 38(3): 261-266. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||