Laboratory Medicine ›› 2024, Vol. 39 ›› Issue (7): 668-672.DOI: 10.3969/j.issn.1673-8640.2024.07.009
Previous Articles Next Articles
HUANG Ying1, ZHOU Ying1(), SONG Yunxiao2(
), MAO Junjie1, GUAN Chao1, ZHAO Jinyan1, NI Peiqing1
Received:
2024-01-06
Revised:
2024-04-16
Online:
2024-07-30
Published:
2024-07-31
CLC Number:
HUANG Ying, ZHOU Ying, SONG Yunxiao, MAO Junjie, GUAN Chao, ZHAO Jinyan, NI Peiqing. Pulmonary tuberculosis diagnosis model for blood routine test based on machine learning algorithms[J]. Laboratory Medicine, 2024, 39(7): 668-672.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2024.07.009
组别 | 例数 | 嗜酸性粒细胞绝对数/(×109·L-1) | 血红蛋白/(g·L-1) | 淋巴细胞绝对数/(×109·L-1) |
---|---|---|---|---|
肺结核组 | 469 | 0.19±0.16 | 144.22±14.79 | 1.65±0.58 |
对照组 | 506 | 0.15±0.13 | 137.21±15.47 | 1.90±0.64 |
统计值 | 4.3 | 7.22 | -6.37 | |
P值 | <0.001 | <0.001 | <0.001 | |
组别 | 单核细胞绝对数/(×109·L-1) | 平均血红蛋白含量/pg | 平均血红蛋白浓度/(g·L-1) | 平均红细胞体积/fL |
肺结核组 | 0.39±0.15 | 29.91±1.87 | 327.37±8.94 | 91.34±5.11 |
对照组 | 0.36±0.13 | 30.60±1.90 | 330.13±12.39 | 92.73±5.46 |
统计值 | 3.34 | -5.71 | -3.96 | -4.1 |
P值 | 0.001 | <0.001 | <0.001 | <0.001 |
组别 | 平均血小板体积/fL | 中性粒细胞绝对数/(×109·L-1) | 嗜酸性粒细胞百分比/% | 大型血小板百分比/% |
肺结核组 | 8.77±0.91 | 3.96±1.70 | 3.01±2.29 | 18.79±6.40 |
对照组 | 9.46±1.05 | 3.84±1.48 | 2.44±1.98 | 22.94±7.07 |
统计值 | -10.93 | 1.18 | 4.16 | -9.58 |
P值 | <0.001 | 0.259 | <0.001 | <0.001 |
组别 | 淋巴细胞百分比/% | 单核细胞百分比/% | 中性粒细胞百分比/% | 血小板压积/% |
肺结核组 | 27.90±9.35 | 6.38±1.76 | 62.51±9.79 | 0.21±0.05 |
对照组 | 30.98±8.26 | 5.85±1.62 | 60.45±8.88 | 0.20±0.05 |
统计值 | -5.46 | 4.9 | 4.67 | 3.12 |
P值 | <0.001 | <0.001 | <0.001 | <0.001 |
组别 | 血小板分布宽度/% | 血小板计数/(×109·L-1) | 红细胞计数/(×1012·L-1) | 红细胞体积分布宽度/% |
肺结核组 | 16.02±0.33 | 242.01±64.47 | 4.83±0.49 | 13.09±1.04 |
对照组 | 15.24±2.01 | 211.12±60.67 | 4.50±0.53 | 13.08±0.99 |
统计值 | 8.3 | 7.71 | 10.01 | 0.15 |
P值 | <0.001 | <0.001 | <0.001 | 0.933 |
组别 | 白细胞计数/(×1012·L-1) | 嗜碱性粒细胞绝对数/(×109·L-1) | 嗜碱性粒细胞百分比/% | |
肺结核组 | 6.19±1.99 | 0.01±0.01 | 0.20±0.17 | |
对照组 | 6.27±1.79 | 0.02±0.01 | 0.29±0.23 | |
统计值 | -0.66 | -15.6 | -6.9 | |
P值 | 0.52 | <0.001 | <0.001 |
组别 | 例数 | 嗜酸性粒细胞绝对数/(×109·L-1) | 血红蛋白/(g·L-1) | 淋巴细胞绝对数/(×109·L-1) |
---|---|---|---|---|
肺结核组 | 469 | 0.19±0.16 | 144.22±14.79 | 1.65±0.58 |
对照组 | 506 | 0.15±0.13 | 137.21±15.47 | 1.90±0.64 |
统计值 | 4.3 | 7.22 | -6.37 | |
P值 | <0.001 | <0.001 | <0.001 | |
组别 | 单核细胞绝对数/(×109·L-1) | 平均血红蛋白含量/pg | 平均血红蛋白浓度/(g·L-1) | 平均红细胞体积/fL |
肺结核组 | 0.39±0.15 | 29.91±1.87 | 327.37±8.94 | 91.34±5.11 |
对照组 | 0.36±0.13 | 30.60±1.90 | 330.13±12.39 | 92.73±5.46 |
统计值 | 3.34 | -5.71 | -3.96 | -4.1 |
P值 | 0.001 | <0.001 | <0.001 | <0.001 |
组别 | 平均血小板体积/fL | 中性粒细胞绝对数/(×109·L-1) | 嗜酸性粒细胞百分比/% | 大型血小板百分比/% |
肺结核组 | 8.77±0.91 | 3.96±1.70 | 3.01±2.29 | 18.79±6.40 |
对照组 | 9.46±1.05 | 3.84±1.48 | 2.44±1.98 | 22.94±7.07 |
统计值 | -10.93 | 1.18 | 4.16 | -9.58 |
P值 | <0.001 | 0.259 | <0.001 | <0.001 |
组别 | 淋巴细胞百分比/% | 单核细胞百分比/% | 中性粒细胞百分比/% | 血小板压积/% |
肺结核组 | 27.90±9.35 | 6.38±1.76 | 62.51±9.79 | 0.21±0.05 |
对照组 | 30.98±8.26 | 5.85±1.62 | 60.45±8.88 | 0.20±0.05 |
统计值 | -5.46 | 4.9 | 4.67 | 3.12 |
P值 | <0.001 | <0.001 | <0.001 | <0.001 |
组别 | 血小板分布宽度/% | 血小板计数/(×109·L-1) | 红细胞计数/(×1012·L-1) | 红细胞体积分布宽度/% |
肺结核组 | 16.02±0.33 | 242.01±64.47 | 4.83±0.49 | 13.09±1.04 |
对照组 | 15.24±2.01 | 211.12±60.67 | 4.50±0.53 | 13.08±0.99 |
统计值 | 8.3 | 7.71 | 10.01 | 0.15 |
P值 | <0.001 | <0.001 | <0.001 | 0.933 |
组别 | 白细胞计数/(×1012·L-1) | 嗜碱性粒细胞绝对数/(×109·L-1) | 嗜碱性粒细胞百分比/% | |
肺结核组 | 6.19±1.99 | 0.01±0.01 | 0.20±0.17 | |
对照组 | 6.27±1.79 | 0.02±0.01 | 0.29±0.23 | |
统计值 | -0.66 | -15.6 | -6.9 | |
P值 | 0.52 | <0.001 | <0.001 |
指标 | 单因素Logistic回归分析 | 多因素Logistic回归分析 | |||
---|---|---|---|---|---|
OR值①(95%CI②) | P值 | OR值①(95%CI②) | P值 | ||
嗜酸性粒细胞绝对数 | 5.44(2.16~13.71) | 0.000 3 | 5.72(2.26~14.49) | 0.000 2 | |
血红蛋白 | 1.03(1.02~1.04) | <0.000 1 | 1.03(1.02~1.04) | <0.000 1 | |
淋巴细胞绝对数 | 0.50(0.40~0.62) | <0.000 1 | 0.50(0.40~0.62) | <0.000 1 | |
单核细胞绝对数 | 4.47(1.79~11.16) | 0.001 3 | 4.55(1.82~11.38) | 0.001 2 | |
平均血红蛋白含量 | 0.82(0.76~0.88) | <0.000 1 | 0.82(0.76~0.88) | <0.000 1 | |
平均血红蛋白浓度 | 0.98(0.96~0.99) | 0.000 1 | 0.97(0.96~0.99) | <0.000 1 | |
平均红细胞体积 | 0.95(0.93~0.97) | <0.000 1 | 0.95(0.93~0.97) | <0.000 1 | |
平均血小板体积 | 0.48(0.41~0.55) | <0.000 1 | 0.48(0.41~0.55) | <0.000 1 | |
中性粒细胞绝对数 | 1.05(0.97~1.13) | 0.259 5 | 1.05(0.97~1.13) | 0.257 0 | |
嗜酸性粒细胞百分比 | 1.14(1.07~1.22) | <0.000 1 | 1.14(1.07~1.22) | <0.000 1 | |
大型血小板百分比 | 0.91(0.89~0.93) | <0.000 1 | 0.91(0.89~0.93) | <0.000 1 | |
淋巴细胞百分比 | 0.96(0.95~0.98) | <0.000 1 | 0.96(0.95~0.98) | <0.000 1 | |
单核细胞百分比 | 1.21(1.12~1.30) | <0.000 1 | 1.21(1.12~1.30) | <0.000 1 | |
中性粒细胞百分比 | 1.02(1.01~1.04) | 0.000 7 | 1.02(1.01~1.04) | 0.000 8 | |
血小板压积 | 114.95(8.85~1 493.42) | 0.000 3 | 145.34(10.00~1 928.00) | 0.000 2 | |
血小板分布宽度 | 1.58(1.39~1.81) | <0.000 1 | 1.61(1.41~1.84) | <0.000 1 | |
血小板计数 | 1.01(1.01~1.01) | <0.000 1 | 1.01(1.01~1.01) | <0.000 1 | |
红细胞计数 | 3.76(2.84~4.99) | <0.000 1 | 3.77(2.84~5.00) | <0.000 1 | |
红细胞体积分布宽度 | 1.01(0.89~1.14) | 0.932 7 | 1.01(0.89~1.14) | 0.913 5 | |
白细胞计数 | 0.98(0.92~1.05) | 0.519 8 | 0.98(0.92~1.05) | 0.559 1 | |
嗜碱性粒细胞绝对数 | 0.00(0.00~0.00) | <0.000 1 | 0.00(0.00~0.00) | <0.000 1 | |
嗜碱性粒细胞百分比 | 0.10(0.05~0.20) | <0.000 1 | 0.09(0.04~0.19) | <0.000 1 |
指标 | 单因素Logistic回归分析 | 多因素Logistic回归分析 | |||
---|---|---|---|---|---|
OR值①(95%CI②) | P值 | OR值①(95%CI②) | P值 | ||
嗜酸性粒细胞绝对数 | 5.44(2.16~13.71) | 0.000 3 | 5.72(2.26~14.49) | 0.000 2 | |
血红蛋白 | 1.03(1.02~1.04) | <0.000 1 | 1.03(1.02~1.04) | <0.000 1 | |
淋巴细胞绝对数 | 0.50(0.40~0.62) | <0.000 1 | 0.50(0.40~0.62) | <0.000 1 | |
单核细胞绝对数 | 4.47(1.79~11.16) | 0.001 3 | 4.55(1.82~11.38) | 0.001 2 | |
平均血红蛋白含量 | 0.82(0.76~0.88) | <0.000 1 | 0.82(0.76~0.88) | <0.000 1 | |
平均血红蛋白浓度 | 0.98(0.96~0.99) | 0.000 1 | 0.97(0.96~0.99) | <0.000 1 | |
平均红细胞体积 | 0.95(0.93~0.97) | <0.000 1 | 0.95(0.93~0.97) | <0.000 1 | |
平均血小板体积 | 0.48(0.41~0.55) | <0.000 1 | 0.48(0.41~0.55) | <0.000 1 | |
中性粒细胞绝对数 | 1.05(0.97~1.13) | 0.259 5 | 1.05(0.97~1.13) | 0.257 0 | |
嗜酸性粒细胞百分比 | 1.14(1.07~1.22) | <0.000 1 | 1.14(1.07~1.22) | <0.000 1 | |
大型血小板百分比 | 0.91(0.89~0.93) | <0.000 1 | 0.91(0.89~0.93) | <0.000 1 | |
淋巴细胞百分比 | 0.96(0.95~0.98) | <0.000 1 | 0.96(0.95~0.98) | <0.000 1 | |
单核细胞百分比 | 1.21(1.12~1.30) | <0.000 1 | 1.21(1.12~1.30) | <0.000 1 | |
中性粒细胞百分比 | 1.02(1.01~1.04) | 0.000 7 | 1.02(1.01~1.04) | 0.000 8 | |
血小板压积 | 114.95(8.85~1 493.42) | 0.000 3 | 145.34(10.00~1 928.00) | 0.000 2 | |
血小板分布宽度 | 1.58(1.39~1.81) | <0.000 1 | 1.61(1.41~1.84) | <0.000 1 | |
血小板计数 | 1.01(1.01~1.01) | <0.000 1 | 1.01(1.01~1.01) | <0.000 1 | |
红细胞计数 | 3.76(2.84~4.99) | <0.000 1 | 3.77(2.84~5.00) | <0.000 1 | |
红细胞体积分布宽度 | 1.01(0.89~1.14) | 0.932 7 | 1.01(0.89~1.14) | 0.913 5 | |
白细胞计数 | 0.98(0.92~1.05) | 0.519 8 | 0.98(0.92~1.05) | 0.559 1 | |
嗜碱性粒细胞绝对数 | 0.00(0.00~0.00) | <0.000 1 | 0.00(0.00~0.00) | <0.000 1 | |
嗜碱性粒细胞百分比 | 0.10(0.05~0.20) | <0.000 1 | 0.09(0.04~0.19) | <0.000 1 |
指标 | 相对重要性 | 归一化 | 贡献度 |
---|---|---|---|
平均血小板体积 | 739.5 | 1.000 | 0.171 |
血小板分布宽度 | 646.7 | 0.875 | 0.149 |
红细胞计数 | 630.3 | 0.852 | 0.145 |
血小板 | 440.1 | 0.595 | 0.102 |
淋巴细胞数 | 417.2 | 0.564 | 0.096 |
嗜酸性粒细胞比率 | 396.3 | 0.536 | 0.091 |
平均血红蛋白浓度 | 338.8 | 0.458 | 0.078 |
单核细胞比率 | 310.5 | 0.420 | 0.072 |
嗜碱性粒细胞比率 | 224.5 | 0.304 | 0.052 |
嗜碱性粒细胞数 | 190.5 | 0.258 | 0.044 |
指标 | 相对重要性 | 归一化 | 贡献度 |
---|---|---|---|
平均血小板体积 | 739.5 | 1.000 | 0.171 |
血小板分布宽度 | 646.7 | 0.875 | 0.149 |
红细胞计数 | 630.3 | 0.852 | 0.145 |
血小板 | 440.1 | 0.595 | 0.102 |
淋巴细胞数 | 417.2 | 0.564 | 0.096 |
嗜酸性粒细胞比率 | 396.3 | 0.536 | 0.091 |
平均血红蛋白浓度 | 338.8 | 0.458 | 0.078 |
单核细胞比率 | 310.5 | 0.420 | 0.072 |
嗜碱性粒细胞比率 | 224.5 | 0.304 | 0.052 |
嗜碱性粒细胞数 | 190.5 | 0.258 | 0.044 |
项目 | 最佳临界值 | 敏感性/% | 特异性/% | 阳性预测值/% | 阴性预测值/% | 准确性/% | 曲线下面积 |
---|---|---|---|---|---|---|---|
测试集 | 0.477 830 8 | 92.04 | 55.22 | 63.41 | 89.16 | 72.06 | 0.847 4(0.782 6~0.898 5) |
训练集 | 0.477 082 6 | 99.16 | 80.91 | 83.25 | 99.01 | 89.84 | 0.992 1(0.985 5~1.000 0) |
项目 | 最佳临界值 | 敏感性/% | 特异性/% | 阳性预测值/% | 阴性预测值/% | 准确性/% | 曲线下面积 |
---|---|---|---|---|---|---|---|
测试集 | 0.477 830 8 | 92.04 | 55.22 | 63.41 | 89.16 | 72.06 | 0.847 4(0.782 6~0.898 5) |
训练集 | 0.477 082 6 | 99.16 | 80.91 | 83.25 | 99.01 | 89.84 | 0.992 1(0.985 5~1.000 0) |
[1] | CHUNG W S, LI C R. Can DOTS improve quality of life among patients with pulmonary tuberculosis?[J]. Int J Tuberc Lung Dis, 2013, 17(3):425-426. |
[2] | 王艳, 郑华荣, 罗祎斐, 等. 基于机器学习技术利用常规检验数据建立肺结核鉴别诊断方法[J]. 中华检验医学杂志, 2022, 45(12):1201-1206. |
[3] |
PARANJAPE K, SCHINKEL M, HAMMER R D, et al. The value of artificial intelligence in laboratory medicine[J]. Am J Clin Pathol, 2021, 155(6):823-831.
DOI PMID |
[4] | 贾音, 孙婷婷, 刘海东, 等. 常规检验大数据在胃癌早期诊断中的应用[J]. 中华检验医学杂志, 2021, 44(3):197-203. |
[5] | 王黎霞, 成诗明, 周林, 等. 中华人民共和国卫生行业标准肺结核诊断:WS 288-2017[J]. 中国感染控制杂志, 2018, 17(7):642-652. |
[6] | 郭杰, 刘海东, 韦琴, 等. 基于检验大数据的结直肠癌风险预测模型建立与验证[J]. 中华检验医学杂志, 2021, 44(10):914-920. |
[7] | XING Z, DING W, ZHANG S, et al. Machine learning based differentiation of nontuberculous Mycobacteria lung disease and pulmonary tuberculosis using CT images[J]. Biomed Res Int, 2020, 2020:6287545. |
[8] | JEONG Y S, JEON M, PARK J H, et al. Machine learning based approach to differential diagnosis in tuberculous and viral meningitis[J]. Infect Chemother, 2021, 53(1):53-62. |
[1] | SUN Xinlin, YE Xingming, LI Qian, ZHAO Lijun. Bronchoscopy combined with sputum Mycobacterium tuberculosis ribonucleic acid and serum Mycobacterium tuberculosis specific antibody determinations for diagnosis of negative pulmonary tuberculosis [J]. Laboratory Medicine, 2023, 38(9): 870-873. |
[2] | GAI Linlin, LI Haibo, CHU Jinjin, SUN Jiamei, YAN Xinyi, DU Jinke, DAI Wenqing, XU Donghua. Role of chemiluminescence interferon gamma release assay in auxiliary diagnosis of pulmonary tuberculosis [J]. Laboratory Medicine, 2023, 38(3): 257-260. |
[3] | LI Xiaoqian, WANG Zhihui, CHI Yuepeng, WANG Yuhong, XIE Lanpin, LIANG Yachong. Analysis of diagnostic efficacy of serum MMP-9 with or without Xpert MTB/RIF assay in alveolar lavage fluid and INF-γ release test for pulmonary tuberculosis [J]. Laboratory Medicine, 2022, 37(1): 11-15. |
[4] | LI Dian, ZHENG Zheng, JIANG Yezhou. Roles of serum GM-CSF,sTREM-1 combined with T-SPOT.TB in the differential diagnosis of pulmonary tuberculosis [J]. Laboratory Medicine, 2021, 36(8): 833-836. |
[5] | LIN Xiaoling, LIANG Lifeng, WU Yingtao, ZHAO Jieming, CAI Qiuyue. An drug resistance analysis on the mycobacterium tuberculosis complex of pulmonary tuberulosis in Yunfu city [J]. Laboratory Medicine, 2021, 36(2): 194-197. |
[6] | FAN Jiubo, SUN Li, HE Jiafu, SHANG Yifei, LU Jiacai, MA Yaping, ZHANG Qin, ZHAO Jianzhong. Roles of SAA combined determination with CRP and blood routine test in the diagnosis of COVID-19 [J]. Laboratory Medicine, 2020, 35(7): 640-644. |
[7] | Xi'an YANG Jian, ZHANG Tianhua, XIAN Xiaoping, LI Yan, CHEN Meiling, WANG Rui. Drug resistance of 218 isolates of Mycobacterium tuberculosis in [J]. Laboratory Medicine, 2019, 34(5): 421-427. |
[8] | WANG Shuang, CHEN Si, FU Yang, MAO Zhigang, JIANG Hong. Role of machine learning in peripheral blood blast intelligent determination [J]. Laboratory Medicine, 2019, 34(12): 1118-1123. |
[9] | MA Jirong, ZHOU Jingyi, GU Yi, SHEN Wenyan, SHEN Wei. Evaluation on the real-time correction of whole blood CRP determination using HCT value [J]. Laboratory Medicine, 2018, 33(11): 983-986. |
[10] | HOU Li, YU Lu, NIU Yao, ZHANG Yuan, WANG Liang. Role of noninvasive diagnostic model for liver fibrosis in patients with chronic hepatitis B [J]. Laboratory Medicine, 2018, 33(10): 888-893. |
[11] | LIU Ganbin, ZHANG Junai, DAI Youchao, ZHUANG Zegang, CHEN Chen, YI Lailong, XU Junfa. Elevation of interleukin-37b-producing lymphocyte proportion in patients with active pulmonary tuberculosis [J]. Laboratory Medicine, 2017, 32(5): 394-398. |
[12] | ZHANG Qing, XU Bingru, LI Kecheng. GeneXpert MTB/RIF system in the diagnosis of pulmonary tuberculosis [J]. Laboratory Medicine, 2016, 31(7): 599-602. |
[13] | GAO Yuan;YANG Jianmin;WANG Huan;MA Zhan;ZHANG Hong. Survey analysis on the routine reference intervals of peripheral blood determination among 2 408 healthy children in Shanghai [J]. , 2012, 27(3): 217-220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||