Laboratory Medicine ›› 2025, Vol. 40 ›› Issue (2): 114-120.DOI: 10.3969/j.issn.1673-8640.2025.02.003
Previous Articles Next Articles
WANG Yange1, YANG Jiyun2, ZHOU Yu2, JIANG Li1()
Received:
2024-12-23
Revised:
2025-01-06
Online:
2025-02-28
Published:
2025-03-07
CLC Number:
WANG Yange, YANG Jiyun, ZHOU Yu, JIANG Li. Quality control and proficiency testing in next-generation sequencing of inherited genetic mutations[J]. Laboratory Medicine, 2025, 40(2): 114-120.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2025.02.003
方法 | 特点 | 局限性 |
---|---|---|
TGS | 1)通过对特定目标基因区域的高效富集和深度测序实现精准检测;2)敏感性和特异性高 | 1)仅能检测预设的目标基因,无法发现新的致病基因或未知变异;2)基因Panel需不断更新,以纳入新的相关基因 |
WES | 1)靶向编码蛋白的外显子区域,同时覆盖部分基因调控区;2)检测已知基因变异,并发现新的候选致病基因;3)常用于单基因遗传病的诊断 | 1)仅覆盖约2%的基因组区域,无法检测非编码调控区的关键序列;2)临床诊断率有限 |
WGS | 1)全面覆盖基因组,包括非编码区;2)可检测多种变异(单核苷酸变异、插入、缺失、基因组结构变异等);3)不受捕获和扩增限制 | 1)覆盖深度低于WES;2)成本较高,临床应用受限 |
方法 | 特点 | 局限性 |
---|---|---|
TGS | 1)通过对特定目标基因区域的高效富集和深度测序实现精准检测;2)敏感性和特异性高 | 1)仅能检测预设的目标基因,无法发现新的致病基因或未知变异;2)基因Panel需不断更新,以纳入新的相关基因 |
WES | 1)靶向编码蛋白的外显子区域,同时覆盖部分基因调控区;2)检测已知基因变异,并发现新的候选致病基因;3)常用于单基因遗传病的诊断 | 1)仅覆盖约2%的基因组区域,无法检测非编码调控区的关键序列;2)临床诊断率有限 |
WGS | 1)全面覆盖基因组,包括非编码区;2)可检测多种变异(单核苷酸变异、插入、缺失、基因组结构变异等);3)不受捕获和扩增限制 | 1)覆盖深度低于WES;2)成本较高,临床应用受限 |
PT方式 | 描述 | 优缺点 | 挑战 |
---|---|---|---|
MBPT | 评估实验室NGS操作的全流程,包括样本处理、文库制备、测序和生物信息学分析,确保检测的可靠性和准确性 | 优点:全面评估检测流程,能够模拟不同VAF(变异等位基因频率),并进行真实评估 缺点:受DNA样本中的变异种类和VAF模拟的灵活性限制,评估范围有限 | 需要复杂的技术(如质粒、基因编辑技术)扩展应用范围 |
ISPT | 通过计算机模拟生成变异样本序列文件,专注评估NGS中的生物信息学数据分析过程,包括变异检测、注释 | 优点:灵活性高,适用于跨实验室、跨平台的评估,能够模拟复杂变异,并评估不同VAF 缺点:仅限于生物信息学分析,无法覆盖NGS全流程 | 可能存在偏差和伪影,依赖专家管理和处理模拟序列文件 |
PT方式 | 描述 | 优缺点 | 挑战 |
---|---|---|---|
MBPT | 评估实验室NGS操作的全流程,包括样本处理、文库制备、测序和生物信息学分析,确保检测的可靠性和准确性 | 优点:全面评估检测流程,能够模拟不同VAF(变异等位基因频率),并进行真实评估 缺点:受DNA样本中的变异种类和VAF模拟的灵活性限制,评估范围有限 | 需要复杂的技术(如质粒、基因编辑技术)扩展应用范围 |
ISPT | 通过计算机模拟生成变异样本序列文件,专注评估NGS中的生物信息学数据分析过程,包括变异检测、注释 | 优点:灵活性高,适用于跨实验室、跨平台的评估,能够模拟复杂变异,并评估不同VAF 缺点:仅限于生物信息学分析,无法覆盖NGS全流程 | 可能存在偏差和伪影,依赖专家管理和处理模拟序列文件 |
[1] |
GUO W, ZHU X, YAN L, et al. The present and future of whole-exome sequencing in studying and treating human reproductive disorders[J]. J Genet Genomics, 2018, 45(10):517-525.
DOI PMID |
[2] |
HEGDE M, SANTANI A, MAO R, et al. Development and validation of clinical whole-exome and whole-genome sequencing for detection of germline variants in inherited disease[J]. Arch Pathol Lab Med, 2017, 141(6):798-805.
DOI PMID |
[3] |
SHUKUYA T, TAKAHASHI K. Germline mutations in lung cancer[J]. Respir Investig, 2019, 57(3):201-206.
DOI PMID |
[4] | WELANDER J, ANDREASSON A, JUHLIN C C, et al. Rare germline mutations identified by targeted next-generation sequencing of susceptibility genes in pheochromocytoma and paraganglioma[J]. J Clin Endocrinol Metab, 2014, 99(7):E1352-E1360. |
[5] | 潘骏, 陈禹鑫, 逯艳文, 等. 家族性VHL综合征患者家系突变类型及二次打击的分析[J]. 现代泌尿外科杂志, 2023, 28(9):799-804. |
[6] | PARK H S, LEE Y H, HONG N, et al. Germline mutations related to primary hyperparathyroidism identified by next-generation sequencing[J]. Front Endocrinol(Lausanne), 2022,13:853171. |
[7] | 方邦伟, 韦煜, 潘剑, 等. 855例前列腺癌患者错配修复基因胚系突变临床研究[J]. 浙江大学学报(医学版), 2023, 52(2):133-138. |
[8] | 王嘉, 王杉, 金锋. BRCA1/2胚系突变乳腺癌临床诊疗进展[J]. 中国肿瘤临床, 2024, 51(18):957-962. |
[9] | 肖婷, 吴丽文. 先天性肌无力综合征的诊治进展[J]. 中国当代儿科杂志, 2020, 22(6):672-676. |
[10] |
NAKAMICHI K, VAN GELDER R N, CHAO J R, et al. Targeted adaptive long-read sequencing for discovery of complex phased variants in inherited retinal disease patients[J]. Sci Rep, 2023, 13(1):8535.
DOI PMID |
[11] | 曹文静, 高雅, 黄辉, 等. 全外显子组测序在单基因遗传病诊断中应用[C]. 郑州: 第十二次全国医学遗传学学术会议论文集, 2013. |
[12] | 陈玉兰, 张又祥, 杨秀芳, 等. 全外显子测序技术在危重症新生儿遗传病中的应用价值[J]. 中国当代儿科杂志, 2020, 22(12):1261-1266. |
[13] | 康亚斌. 基于全外显子测序技术对身材矮小患者的遗传病因研究[D]. 天津: 天津医科大学, 2020. |
[14] | SIMON A J, GOLAN A C, LEV A, et al. Whole exome sequencing(WES)approach for diagnosing primary immunodeficiencies(PIDs)in a highly consanguineous community[J]. Clin Immunol, 2020,214:108376. |
[15] | ZHANG L, PAN L, TENG Y, et al. Molecular diagnosis for 55 fetuses with skeletal dysplasias by whole-exome sequencing:a retrospective cohort study[J]. Clin Genet, 2021, 100(2):219-226. |
[16] | LORD J, MCMULLAN D J, EBERHARDT R Y, et al. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography(PAGE):a cohort study[J]. Lancet, 2019, 393(10173):747-757. |
[17] | TSE K Y, SURYA I U, IRWINDA R, et al. Diagnostic yield of exome sequencing in fetuses with sonographic features of skeletal dysplasias but normal karyotype or chromosomal microarray analysis:a systematic review[J]. Genes(Basel), 2023, 14(6):1203. |
[18] | ZEULI R, KARALI M, DE BRUIJN S E, et al. Whole genome sequencing identifies elusive variants in genetically unsolved Italian inherited retinal disease patients[J]. HGG Adv, 2024, 5(3):100314. |
[19] | 陈锦云, 向碧霞, 孙骅, 等. 美国临床基因检测后遗传咨询的原则与实践[J]. 中华医学遗传学杂志, 2019, 36(1):92-98. |
[20] | 中国抗癌协会血液肿瘤专业委员会, 中华医学会血液学分会, 中华医学会病理学分会. 二代测序技术在血液肿瘤中的应用中国专家共识(2018年版)[J]. 中华血液学杂志, 2018, 39(11):881-886. |
[21] |
中国抗癌协会肿瘤标志专业委员会, 上海市抗癌协会肿瘤标志物专业委员会, 卢仁泉, 等. 基于中国人群的BRCA胚系突变筛查专家共识(2024年版)[J]. 中国癌症杂志, 2024, 34(2):220-238.
DOI |
[22] | MARSHALL C R, CHOWDHURY S, TAFT R J, et al. Best practices for the analytical validation of clinical whole-genome sequencing intended for the diagnosis of germline disease[J]. NPJ Genom Med, 2020,5:47. |
[23] |
SEGAL J P. Next-generation proficiency testing[J]. J Mol Diagn, 2016, 18(4):469-470.
DOI PMID |
[24] |
SCHRIJVER I, AZIZ N, JENNINGS L J, et al. Methods-based proficiency testing in molecular genetic pathology[J]. J Mol Diagn, 2014, 16(3):283-287.
DOI PMID |
[25] |
RICHARDS C S, PALOMAKI G E, LACBAWAN F L, et al. Three-year experience of a CAP/ACMG methods-based external proficiency testing program for laboratories offering DNA sequencing for rare inherited disorders[J]. Genet Med, 2014, 16(1):25-32.
DOI PMID |
[26] | DUNCAVAGE E J, ABEL H J, MERKER J D, et al. A model study of in silico proficiency testing for clinical next-generation sequencing[J]. Arch Pathol Lab Med, 2016, 140(10):1085-1091. |
[27] |
SIMS D J, HARRINGTON R D, POLLEY E C, et al. Plasmid-based materials as multiplex quality controls and calibrators for clinical next-generation sequencing assays[J]. J Mol Diagn, 2016, 18(3):336-349.
DOI PMID |
[28] | ZOOK J M, SAMAROV D, MCDANIEL J, et al. Synthetic spike-in standards improve run-specific systematic error analysis for DNA and RNA sequencing[J]. PLoS One, 2012, 7(7):e41356. |
[29] | DUNCAVAGE E J, ABEL H J, PFEIFER J D. In silico proficiency testing for clinical next-generation sequencing[J]. J Mol Diagn, 2017, 19(1):35-42. |
[30] |
GARGIS A S, KALMAN L, BERRY M W, et al. Assuring the quality of next-generation sequencing in clinical laboratory practice[J]. Nat Biotechnol, 2012, 30(11):1033-1036.
DOI PMID |
[31] | PRATAS D, PINHO A J, RODRIGUES J M. XS:a FASTQ read simulator[J]. BMC Res Notes, 2014,7:40. |
[32] | HUANG W, LI L, MYERS J R, et al. ART:a next-generation sequencing read simulator[J]. Bioinformatics, 2012, 28(4):593-594. |
[33] | HU X, YUAN J, SHI Y, et al. PIRS:profile-based Illumina pair-end reads simulator[J]. Bioinformatics, 2012, 28(11):1533-1535. |
[1] | BAO Yun, YU Tingting, QUAN Jing, YIN Liufan, ZHANG Pengyin, XIAO Yanqun. Result analysis of external quality assessment of next-generation sequencing for genetic testing of inherited diseases in Shanghai [J]. Laboratory Medicine, 2025, 40(2): 160-164. |
[2] | XU Chunhui, ZHOU Xinyue, YI Huiming, ZHANG Lining, CHEN Shulian, ZHU Guoqing, FENG Sizhou. Diagnostic roles of mNGS and Mucorales PCR in pulmonary mucormycosis in patients with blood diseases [J]. Laboratory Medicine, 2024, 39(12): 1145-1149. |
[3] | JIN Zhonggan, LU Liu, YE Zhihan, JU Yi, OU Yuanzhu, YU Xiaoxuan, ZHANG Sujie. Development and application of quality control materials for GCA in serum [J]. Laboratory Medicine, 2024, 39(12): 1208-1213. |
[4] | SHANG Yuanjiang, ZHU Guoqing, ZHANG Lei, SHEN Dandan, PAN Qiuhui. Application of metagenomic next-generation sequencing and traditional methods in central nervous system infection [J]. Laboratory Medicine, 2024, 39(11): 1101-1107. |
[5] | AN Chongwen, CHEN Jian, PANG Lu, XU Dong. Development and evaluation of internal quality control materials for immunofixation electrophoresis [J]. Laboratory Medicine, 2024, 39(1): 37-42. |
[6] | MENG Xi, WEI Zhen, BAI Jianhua, HAO Xiaoke, ZENG Xianfei. Application of EWMA,HIQC and autoverification in primary medical institutions [J]. Laboratory Medicine, 2023, 38(9): 884-889. |
[7] | WEN Jing, SHI Rui, XIE Jia, LIU Feng, LI Guang, REN Jingjing, LEI Xiaoru, GUO Xiaobo, SONG Yanping. Clinical application of metagenomic next-generation sequencing for determining pathogens in febrile neutropenic patients [J]. Laboratory Medicine, 2022, 37(9): 855-859. |
[8] | CHEN Naihan, SA Yalian. Overview of detection methods for Mycoplasma in cell preparations [J]. Laboratory Medicine, 2022, 37(7): 684-687. |
[9] | ZHANG Chen, LI Ting, MENG Qinghao, XIE Nan, ZHANG Weimin, ZHAO Fei, LI Min, GAO Xuan, YANG Sijie. Performance evaluation of glycerol as stabilizer for the preparation of seminal plasma biochemical quality control products [J]. Laboratory Medicine, 2022, 37(12): 1200-1203. |
[10] | FANG Huiling, CHEN Ziqi, ZHU Yuqing. Performance of antigen test for SARS-CoV-2 and related research progress [J]. Laboratory Medicine, 2022, 37(11): 1098-1103. |
[11] | KAN Lijuan, ZHANG Lijun, ZHANG Xiuming. Interpretation and application of 15 quality control indicators in clinical laboratories [J]. Laboratory Medicine, 2022, 37(10): 907-914. |
[12] | YANG Fan, DONG Danfeng, LU Yide. Application of patient-based real-time quality control using exponentially weighted moving average method on internal quality control procedures for serum ion items [J]. Laboratory Medicine, 2021, 36(9): 962-968. |
[13] | ZHANG Pengyin, QUAN Jing, WANG Xueliang, XIAO Yanqun, BAO Yun. External quality assessment of irinotecan-related metabolism genotyping in Shanghai [J]. Laboratory Medicine, 2021, 36(8): 875-879. |
[14] | ZHANG Hongwei, ZHAO Zhengjie, ZHAO Yan, LI Haisheng, LI Xiufang, QIAN Jing, GUO Chong. Application of Unity Real Time software to establish individual quality control rules for blood cell analysis [J]. Laboratory Medicine, 2021, 36(7): 749-752. |
[15] | ZHOU Yujing, XU Jingjing, XU Jie, LIU Dongmei, HE Jun. Next-generation sequencing for the diagnosis of Toxoplasma gondii infection in patients with chronic kidney disease [J]. Laboratory Medicine, 2021, 36(6): 596-599. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||