Laboratory Medicine ›› 2024, Vol. 39 ›› Issue (6): 608-614.DOI: 10.3969/j.issn.1673-8640.2024.06.017
Previous Articles Next Articles
ZHOU Jian, REN Xuemei, WANG Xin, LI Zhuo()
Received:
2023-08-09
Revised:
2024-01-11
Online:
2024-06-30
Published:
2024-07-08
CLC Number:
ZHOU Jian, REN Xuemei, WANG Xin, LI Zhuo. Research progress and challenges on CRISPR/Cas nucleic acid diagnosis system[J]. Laboratory Medicine, 2024, 39(6): 608-614.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2024.06.017
核酸检测系统 | Cas蛋白 | 信号扩增 | 检测时间 | 检测下限 | 检测目的基因 | 参考文献 |
---|---|---|---|---|---|---|
NASBACC | SpCas9 | LAMP | ≤3 h | fmol·L-1 | 寨卡病毒 | [ |
ctPCR3.0 | SpCas9 | qPCR | ≤2 h | 2 ng·L-1 | HPV 16/18型 | [ |
Cas12aVDet | EnGenLba、Cas12a | RPA | ≤30 min | amol·L-1 | 支原体 | [ |
CRISPR-ENHANCE | Cas12a | LAMP/ RT-LAMP | 60~90 min | fmol·L-1 | SARS-CoV-2 | [ |
SHERLOCK+HUDSON | LwCas13a | RPA | <2 h | amol·L-1 | 寨卡病毒 | [ |
SHERLOCKv2 | CcaCas13b、PsmCas13b、LwaCas13a、AsCas12a | RPA | 0.5~3 h | zmol·L-1 | 寨卡病毒、金黄色葡萄球菌 | [ |
CARMEN-Cas13a | LwCas13a | PCR/RPA | - | amol·L-1 | 169种与人类相关病毒 | [ |
核酸检测系统 | Cas蛋白 | 信号扩增 | 检测时间 | 检测下限 | 检测目的基因 | 参考文献 |
---|---|---|---|---|---|---|
NASBACC | SpCas9 | LAMP | ≤3 h | fmol·L-1 | 寨卡病毒 | [ |
ctPCR3.0 | SpCas9 | qPCR | ≤2 h | 2 ng·L-1 | HPV 16/18型 | [ |
Cas12aVDet | EnGenLba、Cas12a | RPA | ≤30 min | amol·L-1 | 支原体 | [ |
CRISPR-ENHANCE | Cas12a | LAMP/ RT-LAMP | 60~90 min | fmol·L-1 | SARS-CoV-2 | [ |
SHERLOCK+HUDSON | LwCas13a | RPA | <2 h | amol·L-1 | 寨卡病毒 | [ |
SHERLOCKv2 | CcaCas13b、PsmCas13b、LwaCas13a、AsCas12a | RPA | 0.5~3 h | zmol·L-1 | 寨卡病毒、金黄色葡萄球菌 | [ |
CARMEN-Cas13a | LwCas13a | PCR/RPA | - | amol·L-1 | 169种与人类相关病毒 | [ |
项目 | 检测下限/(拷贝·μL-1) | 检测时间/min | 是否需要特殊设备 | 反应条件/℃ | POCT | 特异性 |
---|---|---|---|---|---|---|
CRISPR/Cas | 10 | 20~180 | 否 | 37~42 | 容易 | 高 |
PCR | 1 | ≤240 | 是 | 60~95 | 困难 | 高 |
项目 | 检测下限/(拷贝·μL-1) | 检测时间/min | 是否需要特殊设备 | 反应条件/℃ | POCT | 特异性 |
---|---|---|---|---|---|---|
CRISPR/Cas | 10 | 20~180 | 否 | 37~42 | 容易 | 高 |
PCR | 1 | ≤240 | 是 | 60~95 | 困难 | 高 |
[1] |
LI Y, LI S, WANG J, et al. CRISPR/Cas systems towards next-generation biosensing[J]. Trends Biotechnol, 2019, 37(7):730-743.
DOI PMID |
[2] |
LI L, SHEN G, WU M, et al. CRISPR-Cas-mediated diagnostics[J]. Trends Biotechnol, 2022, 40(11):1326-1345.
DOI PMID |
[3] | MAKAROVA K S, WOLF Y I, IRANZO J, et al. Evolutionary classification of CRISPR-Cas systems:a burst of class 2 and derived variants[J]. Nat Rev Microbiol, 2020, 18(2):67-83. |
[4] |
JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821.
DOI PMID |
[5] |
ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3):759-771.
DOI PMID |
[6] | EAST-SELETSKY A,O'CONNELL M R,KNIGHT S C,et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection[J]. Nature, 2016, 538(7624):270-273. |
[7] | PARDEE K, GREEN A A, TAKAHASHI M K, et al. Rapid,low-cost detection of zika virus using programmable biomolecular components[J]. Cell, 2016, 165(5):1255-1266. |
[8] |
HAJIAN R, BALDERSTON S, TRAN T, et al. Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor[J]. Nat Biomed Eng, 2019, 3(6):427-437.
DOI PMID |
[9] | WANG Q, ZHANG B, XU X, et al. CRISPR-typing PCR(ctPCR),a new Cas9-based DNA detection method[J]. Sci Rep, 2018, 8(1):14126. |
[10] | ZHANG B, XIA Q, WANG Q, et al. Detecting and typing target DNA with a novel CRISPR-typing PCR(ctPCR)technique[J]. Anal Biochem, 2018,561-562:37-46. |
[11] |
ZHOU W, HU L, YING L, et al. A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection[J]. Nat Commun, 2018, 9(1):5012.
DOI PMID |
[12] | LI S Y, CHENG Q X, WANG J M, et al. CRISPR-Cas12a-assisted nucleic acid detection[J]. Cell Discov, 2018, 4:20. |
[13] | LI L, LI S, WU N, et al. HOLMESv2:a CRISPR-Cas12b-assisted platform for nucleic acid detection and dna methylation quantitation[J]. ACS Synth Biol, 2019, 8(10):2228-2237. |
[14] |
SUN Y, YU L, LIU C, et al. One-tube SARS-CoV-2 detection platform based on RT-RPA and CRISPR/Cas12a[J]. J Transl Med, 2021, 19(1):74.
DOI PMID |
[15] | MUKAMA O, WU J, LI Z, et al. An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids[J]. Biosens Bioelectron, 2020, 159:112143. |
[16] | TENG F, GUO L, CUI T, et al. CDetection:CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity[J]. Genome Biol, 2019, 20(1):132. |
[17] | WANG B, WANG R, WANG D, et al. Cas12aVDet:a CRISPR/Cas12a-based platform for rapid and visual nucleic acid detection[J]. Anal Chem, 2019, 91(19):12156-12161. |
[18] | LEE S Y, OH S W. Filtration-based LAMP-CRISPR/Cas12a system for the rapid,sensitive and visualized detection of Escherichia coliO157:H7[J]. Talanta, 2022, 241:123186. |
[19] | SWARTS D C, JINEK M. Cas9 versus Cas12a/Cpf1:structure-function comparisons and implications for genome editing[J]. Wiley Interdiscip Rev RNA, 2018, 9(5):e1481. |
[20] | DAI Y, SOMOZA R A, WANG L, et al. Exploring the trans-cleavage activity of CRISPR-Cas12a(cpf1)for the development of a universal electrochemical biosensor[J]. Angew Chem Int Ed Engl, 2019, 58(48):17399-17405. |
[21] | NEWSHAM E, RICHARDS-KORTUM R. CRISPR-based electrochemical sensor permits sensitive and specific viral detection in low-resource settings[J]. ACS Cent Sci, 2021, 7(6):926-928. |
[22] | LIU P F, ZHAO K R, LIU Z J, et al. Cas12a-based electrochemiluminescence biosensor for target amplification-free DNA detection[J]. Biosens Bioelectron, 2021, 176:112954. |
[23] | TANG Y, QI L, LIU Y, et al. CLIPON:a CRISPR-enabled strategy that turns commercial pregnancy test strips into general point-of-need test devices[J]. Angew Chem Int Ed Engl, 2022, 61(12):e202115907. |
[24] |
HARRINGTON L B, BURSTEIN D, CHEN J S, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018, 362(6416):839-842.
DOI PMID |
[25] |
GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017, 356(6336):438-442.
DOI PMID |
[26] |
QING M, CHEN S L, SUN Z, et al. Universal and programmable rolling circle amplification-CRISPR/Cas12a-mediated immobilization-free electrochemical biosensor[J]. Anal Chem, 2021, 93(20):7499-7507.
DOI PMID |
[27] | LIU T Y, KNOTT G J, SMOCK D C J, et al. Publisher correction:accelerated RNA detection using tandem CRISPR nucleases[J]. Nat Chem Biol, 2021, 17(11):1210. |
[28] | GOOTENBERG J S, ABUDAYYEH O O, KELLNER M J, et al. Multiplexed and portable nucleic acid detection platform with Cas13,Cas12a,and Csm6[J]. Science, 2018, 360(6387):439-444. |
[29] | ACKERMAN C M, MYHRVOLD C, THAKKU S G, et al. Massively multiplexed nucleic acid detection with Cas13[J]. Nature, 2020, 582(7811):277-282. |
[30] | ZHOU T, HUANG R, HUANG M, et al. CRISPR/Cas13a powered portable electrochemiluminescence chip for ultrasensitive and specific miRNA detection[J]. Adv Sci(Weinh), 2020, 7(13):1903661. |
[31] |
FOZOUNI P, SON S, DÍAZ DE LEÓN DERBY M, et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy[J]. Cell, 2021, 184(2):323-333.
DOI PMID |
[32] | ARIZTI-SANZ J, FREIJE C A, STANTON A C, et al. Streamlined inactivation,amplification,and Cas13-based detection of SARS-CoV-2[J]. Nat Commun, 2020, 11(1):5921. |
[33] | NGUYEN L T, GURIJALA J, RANANAWARE S R, et al. CRISPR-ENHANCE:an enhanced nucleic acid detection platform using Cas12a[J]. Methods, 2022, 203:116-124. |
[34] |
王雪亮, 肖艳群, 王华梁. CRISPR/Cas系统在分子检测中的应用[J]. 检验医学, 2020, 35(2):181-185.
DOI |
[1] | YANG Xue, ZHU Jun, JIANG Lingli, WANG Qing, HU Xiaobo. Evaluation on the consistency of blind sample test results of 9 SARS-CoV-2 nucleic acid determination kits in Shanghai,China [J]. Laboratory Medicine, 2023, 38(8): 776-780. |
[2] | ZHAO Yanan, CAO Qixin, YAN Yan, LI Xiaocong, ZHAO Jianping, XIAO Weili. Research progress of CRISPR/Cas13 system for pathogen detection [J]. Laboratory Medicine, 2023, 38(8): 800-804. |
[3] | ZENG Yanfen, WU Quanming, ZHOU Huan, ZHANG Qiuqin, KANG Yanli, LI Yao, CHEN Xijun, HUANG Jiangang, CHEN Falin. Determination limits of a severe acute respiratory syndrome coronavirus 2 nucleic acid determination reagent in 4 determination systems [J]. Laboratory Medicine, 2023, 38(3): 261-266. |
[4] | XU Liuyue, LIAO Qinghua, PENG Kehao, YU Meiling, CHEN Yanmei, ZHUO Wenji, LAI Xiaoyu. Application of nucleic acid aptamer fluorescence probe method and liquid-based sandwich cup method in the determination of Mycobacterium tuberculosis [J]. Laboratory Medicine, 2023, 38(10): 915-918. |
[5] | YANG Danping, WANG Hong, WANG Can, CHEN Wei, YANG Aiping. Diagnostic efficacy and clinical application evaluation of SARS-CoV-2 antigen determination [J]. Laboratory Medicine, 2023, 38(1): 28-31. |
[6] | ZHANG Yaxu, CUI Yanwei, LIU Ziyan. Preliminary research for the determination of HPV E6/E7 mRNA by nucleic acid molecular hybridization-flow cytometry [J]. Laboratory Medicine, 2023, 38(1): 46-50. |
[7] | CHEN Qian, SHAN Zhiming, SONG Chao, KANG Fengfeng, JIN Jing, LI Weixing. Status of quality management of new laboratories for nucleic acid determination of SARS-CoV-2 in Zhejiang [J]. Laboratory Medicine, 2022, 37(7): 669-673. |
[8] | WANG Ding, LI Fugang, LUO Wang, CHEN Huajian, ZHANG Ke, XIE Guoming. Application of long-chain alcohols and oils as washing solution in DNA and RNA coextraction based on magnetic bead method [J]. Laboratory Medicine, 2022, 37(11): 1079-1083. |
[9] | CHEN Jialing, HUANG Yinger, DENG Hao, WU Hongfeng, ZHANG Jing, ZHAO Yijun, LUO Jiahao, HAO Wenbo. Research progress on a gene editing and molecular diagnostic system CRISPR-Cas13a [J]. Laboratory Medicine, 2022, 37(1): 97-100. |
[10] | ZHANG Yunli, WANG Xin, SHAO Ling, QU Bo, ZHAO Hongmei. Comparison of different nucleic acid extraction methods for the detection of SARS-Cov-2 [J]. Laboratory Medicine, 2021, 36(5): 530-534. |
[11] | HUANG Fei, ZHANG Chunyan, GUO Wei, PAN Baishen, WANG Beili. Status and problems of SARS-CoV-2 nucleic acid detection [J]. Laboratory Medicine, 2021, 36(5): 554-559. |
[12] | CHEN Jianbo, YANG Yong, LI Huiyuan, REN Chanjun, DU Juan, LI Genshi, TAO Ran, CHEN Jingxian, ZHANG Ling, LI Miao. Comparison of 4 commercial kits for detecting SARS-CoV-2 nucleic acid [J]. Laboratory Medicine, 2021, 36(4): 396-399. |
[13] | DIAO Yanjun, YANG Liu, SU Mingquan, HAO Xiaoke, LIU Jiayun. Key points for the nucleic acid detection of SARS-CoV-2 [J]. Laboratory Medicine, 2021, 36(3): 352-356. |
[14] | YAN Xinsheng, YANG Huihui, HAO Yexia, HU Yuanping, ZHANG Litao, LIAO Xin, FAN Qingkun, LIU Zejin. Consistency evaluation of 4 nucleic acid detection kits for severe acute respiratory syndrome coronavirus 2 [J]. Laboratory Medicine, 2020, 35(7): 706-709. |
[15] | LIU Jie, ZHAO Jianhong, GAO Yan, HAN Taoli, LI Li, KONG Yi, ZHAO Huanxing, SUN Lingli, WANG Chengbin. Influence of heating inactivation on the nucleic acid testing results of SARS-CoV-2 throat swab samples [J]. Laboratory Medicine, 2020, 35(5): 405-408. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||