Laboratory Medicine ›› 2023, Vol. 38 ›› Issue (8): 800-804.DOI: 10.3969/j.issn.1673-8640.2023.08.018
Previous Articles Next Articles
ZHAO Yanan, CAO Qixin(), YAN Yan, LI Xiaocong, ZHAO Jianping, XIAO Weili
Received:
2022-05-24
Revised:
2022-12-01
Online:
2023-08-30
Published:
2023-10-30
CLC Number:
ZHAO Yanan, CAO Qixin, YAN Yan, LI Xiaocong, ZHAO Jianping, XIAO Weili. Research progress of CRISPR/Cas13 system for pathogen detection[J]. Laboratory Medicine, 2023, 38(8): 800-804.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2023.08.018
[1] |
TANG Y, FU Y. Class 2 CRISPR/Cas:an expanding biotechnology toolbox for and beyond genome editing[J]. Cell Biosci, 2018, 8:59.
DOI |
[2] |
GUPTA D, BHATTACHARJEE O, MANDAL D, et al. CRISPR-Cas9 system:a new-fangled dawn in gene editing[J]. Life Sci, 2019, 232:116636.
DOI URL |
[3] |
MICHELS B E, MOSA M H, STREIBL B I, et al. Pooled in vitro and in vivo CRISPR-Cas9 screening identifies tumor suppressors in human colon organoids[J]. Cell Stem Cell, 2020, 26(5):782-792.
DOI URL |
[4] |
GHAEMI A, BAGHERI E, ABNOUS K, et al. CRISPR-Cas9 genome editing delivery systems for targeted cancer therapy[J]. Life Sci, 2021, 267:118969.
DOI URL |
[5] |
DALVIE N C, LORGEREE T, BIEDERMANN A M, et al. Simplified gene knockout by CRISPR-Cas9-induced homologous recombination[J]. ACS Synth Biol, 2022, 11(1):497-501.
DOI URL |
[6] |
GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017, 356(6336):438-442.
DOI PMID |
[7] |
GAO S, LIU J W, LI Z Y, et al. Sensitive detection of foodborne pathogens based on CRISPR-Cas13a[J]. J Food Sci, 2021, 86(6):2615-2625.
DOI PMID |
[8] |
LI Z, WANG M, XU T, et al. Development and clinical implications of anovel CRISPR-based diagnostic test forpulmonary Aspergillus fumigatus infection[J]. J Microbiol Immunol Infect, 2022, 55(4):749-756.
DOI URL |
[9] |
MAKAROVA K S, ZHANG F, KOONIN E V. SnapShot:class 1 CRISPR-Cas systems[J]. Cell, 2017, 168(5):946.
DOI URL |
[10] |
MAKAROVA K S, ZHANG F, KOONIN E V. SnapShot:class 2 CRISPR-Cas systems[J]. Cell, 2017, 168(1-2):328.
DOI URL |
[11] |
O'CONNELL M R. Molecular mechanisms of RNA targeting by Cas13-containing type Ⅵ CRISPR-Cas systems[J]. J Mol Biol, 2019, 431(1):66-87.
DOI URL |
[12] |
EAST-SELETSKY A, O'CONNELL M R, KNIGHT S C,et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection[J]. Nature, 2016, 538(7624):270-273.
DOI |
[13] |
SMARGON A A, COX D B, PYZOCHA N K, et al. Cas13b is a type Ⅵ-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28[J]. Mol Cell, 2017, 65(4):618-630.
DOI URL |
[14] |
YAN W X, CHONG S, ZHANG H, et al. Cas13d is a compact RNA-targeting type Ⅵ CRISPR effector positively modulated by a WYL-domain-containing accessory protein[J]. Mol Cell, 2018, 70(2):327-339.
DOI URL |
[15] |
EAST-SELETSKY A, O'CONNELL M R, KNIGHT S C, et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection[J]. Nature, 2016, 538(7624):270-273.
DOI |
[16] |
GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017, 356(6336):438-442.
DOI PMID |
[17] |
GOOTENBERG J S, ABUDAYYEH O O, KELLNER M J, et al. Multiplexed and portable nucleic acid detection platform with Cas13,Cas12a,and Csm6[J]. Science, 2018, 360(6387):439-444.
DOI URL |
[18] |
MYHRVOLD C, FREIJE C A, GOOTENBERG J S, et al. Field-deployable viral diagnostics using CRISPR-Cas13[J]. Science, 2018, 360(6387):444-448.
DOI PMID |
[19] |
WU Y, LIU S X, WANG F, et al. Room temperature detection of plasma Epstein-Barr virus DNA with CRISPR-Cas13[J]. Clin Chem, 2019, 65(4):591-592.
DOI PMID |
[20] |
WANG S, LI H, KOU Z, et al. Highly sensitive and specific detection of hepatitis B virus DNA and drug resistance mutations utilizing the PCR-based CRISPR-Cas13a system[J]. Clin Microbiol Infect, 2021, 27(3):443-450.
DOI URL |
[21] |
ACKERMAN C M, MYHRVOLD C, THAKKU S G, et al. Massively multiplexed nucleic acid detection with Cas13[J]. Nature, 2020, 582(7811):277-282.
DOI |
[22] |
LIU Y, XU H, LIU C, et al. CRISPR-Cas13a nanomachine based simple technology for avian Influenza A(H7N9) virus on-site detection[J]. J Biomed Nanotechnol, 2019, 15(4):790-798.
DOI URL |
[23] |
KOSTYUSHEVA A, BREZGIN S, BABIN Y, et al. CRISPR-Cas systems for diagnosing infectious diseases[J]. Methods, 2022, 203:431-446.
DOI URL |
[24] | 郭悦, 安柏霖, 刘丹丹, 等. 重组酶介导的等温扩增技术结合CRISPR-Cas13a蛋白检测8种境外输入性病毒[J]. 中华实验和临床病毒学杂志, 2022, 36(3):245-251. |
[25] | 郭悦. 应用CRISPR-Cas13a和手机显微镜进行新型冠状病毒的无扩增检测[J]. 中华实验和临床病毒学杂志, 2022, 36(3):251. |
[26] |
FOZOUNI P, SON S, DÍAZ DE LEÓN DERBY M, et al. Amplification-free detection of SARS-CoV-2 with CRISPR- Cas13a and mobile phone microscopy[J]. Cell, 2021, 184(2):323-333.
DOI URL |
[27] |
KOSACK C S, PAGE A L, KLATSER P R. A guide to aid the selection of diagnostic tests[J]. Bull World Health Organ, 2017, 95(9):639-645.
DOI URL |
[28] |
JIANG L X, ZENG W Q, WU W T, et al. Development and clinical evaluation of a CRISPR-based diagnostic for rapid group B streptococcus screening[J]. Emerg Infect Dis, 2021, 27(9):2379-2388.
DOI URL |
[29] |
AI J W, ZHOU X, XU T, et al. CRISPR-based rapid and ultra-sensitive diagnostic test for Mycobacterium tuberculosis[J]. Emerg Microbes Infect, 2019, 8(1):1361-1369.
DOI URL |
[30] | 黄明耀, 梁文立, 吴婉婷, 等. 应用CRISPR/Cas13a快速鉴定布鲁氏菌[J]. 中国人兽共患病学报, 2021, 37(5):426-429. |
[31] | 苏璇, 葛以跃, 张倩, 等. CRISPR-Cas13a辅助RAA快速检测金黄色葡萄球菌的研究[J]. 中国病原生物学杂志, 2020, 15(3):253-258. |
[32] | 蔡祺, 王剑飚. 寄生虫病的实验室检查方法[J]. 检验医学, 2021, 36(10):1001-1007. |
[33] | 余复昌. 基于CRISPR/Cas的隐孢子虫和毕氏肠微孢子虫检测方法的建立与应用[D]. 郑州: 河南农业大学, 2021. |
[34] |
LEE R A, PUIG H, NGUYEN P Q, et al. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria[J]. Proc Natl Acad Sci U S A, 2020, 117(41):25722-25731.
DOI URL |
[35] |
ACKERMAN C M, MYHRVOLD C, THAKKU S G, et al. Massively multiplexed nucleic acid detection with Cas13[J]. Nature, 2020, 582(7811):277-282.
DOI |
[1] | MA Kaihui, LÜ Zhi, ZHOU Yanyan, SU Jianrong. Characteristic analysis of Clostridium difficile colonization and infection in inpatients [J]. Laboratory Medicine, 2023, 38(2): 153-156. |
[2] | REN Yanfei, ZHANG Min, YANG Tao, LI Rongkai, LIANG Xin. Analysis of pathogenic epidemiology of patients with lower respiratory tract infection in respiratory intensive care unit [J]. Laboratory Medicine, 2023, 38(2): 157-162. |
[3] | TIAN Yuanyuan, JIA Xiongfei. Advantages and pathogenicity of Enterococci [J]. Laboratory Medicine, 2023, 38(11): 1101-1105. |
[4] | CHEN Hanlu, WU Shenghai. Influence factors of blood culture negative results and progress of pathogen detection in bloodstream infection [J]. Laboratory Medicine, 2022, 37(7): 688-694. |
[5] | WANG Jianying, WANG Shanshan, ZHU Jun, HUANG Xiaochun, WAN Yuxiang, LIU Yun. Distribution and drug resistance of respiratory infection pathogens in patients with lung cancer after chemotherapy [J]. Laboratory Medicine, 2022, 37(4): 356-359. |
[6] | PAN Yunqi, LI Yungai, WANG Jianqiang, WU Qiong, TANG Jin. Analysis of molecular typing,virulence genes and antibiotic susceptibility of uropathogenic Escherichia coli in patients with recurrent urinary tract infection [J]. Laboratory Medicine, 2022, 37(2): 141-145. |
[7] | CHEN Jialing, HUANG Yinger, DENG Hao, WU Hongfeng, ZHANG Jing, ZHAO Yijun, LUO Jiahao, HAO Wenbo. Research progress on a gene editing and molecular diagnostic system CRISPR-Cas13a [J]. Laboratory Medicine, 2022, 37(1): 97-100. |
[8] | LIU Hongqian, SONG Chaohui, LIANG Qiaomi. Establishment and clinical application of multiple RT-PCR MassARRAY for the determinations of 27 respiratory pathogens [J]. Laboratory Medicine, 2021, 36(9): 939-946. |
[9] | HE Ping'an, LU Yanzhou, YANG Xu, LÜ Mei, XIA Qing, LI Qingrong. Research progress in burn infection pathogens and drug resistance with the length of stay during hospitalization [J]. Laboratory Medicine, 2021, 36(9): 973-975. |
[10] | WANG Bowen, ZENG Xiaohua, PENG Kaige, LIU Chang, WU Yingchao, HUANG Yingmei, MA Panpan, Lamuciren , LI Guokai, YANG Li. Influence of different inactivating conditions on nucleic acid determination for respiratory pathogens [J]. Laboratory Medicine, 2021, 36(8): 805-808. |
[11] | YU Jiajia, LI Yuanrui, LIU Ying. MALDI-TOF MS combined with SDS and SAP pretreatment for rapid identification of positive blood culture [J]. Laboratory Medicine, 2021, 36(8): 864-868. |
[12] | ZHAO Yanan, CAO Qixin, ZHAO Jianping. Role of time to positive of blood culturing in preliminary microbial identification [J]. Laboratory Medicine, 2021, 36(12): 1210-1214. |
[13] | ZHENG Xin, HUANG Qi, XING Shan, TAN Xiaoli, DAI Shuqin, LIU Wanli, LIU Xiaomin. Evaluation of 2 blood cultures' performance with different antibiotic adsorption materials in detecting pathogens on BacT/ALERT system [J]. Laboratory Medicine, 2021, 36(12): 1258-1263. |
[14] | LIANG Cuiqiong, TANG Meiling, XIE Zhihua. Distribution and seasonal prevalence of pathogens causing diarrhea in a hospital of Shenzhen [J]. Laboratory Medicine, 2020, 35(9): 868-871. |
[15] | SHEN Xiaohua, ZHU Lijie. Roles of the detections of 8 pathogen IgM antibodies in patients with different pathogens of respiratory tract infection [J]. Laboratory Medicine, 2020, 35(9): 900-902. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||