Laboratory Medicine ›› 2023, Vol. 38 ›› Issue (8): 753-759.DOI: 10.3969/j.issn.1673-8640.2023.08.009
Previous Articles Next Articles
LIANG Dong, MEI Yue, WANG Tengjiao, YU Dong()
Received:
2022-03-21
Revised:
2023-03-14
Online:
2023-08-30
Published:
2023-10-30
CLC Number:
LIANG Dong, MEI Yue, WANG Tengjiao, YU Dong. Characteristic of blood microbiota of postoperative sepsis based on cfDNA NGS[J]. Laboratory Medicine, 2023, 38(8): 753-759.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2023.08.009
微生物名称 | CP/% | SP/% | P值 |
---|---|---|---|
革兰阴性菌 | |||
麦芽寡养单胞菌 | 14.590 | 48.810 | 1.01×10-60 |
食酸菌sp. KKS102 | 0.470 | 2.900 | 1.04×10-56 |
皮氏罗尔斯顿菌 | 0.930 | 2.540 | 1.16×10-35 |
屎肠球菌 | 0.002 | 2.530 | 1.92×10-3 |
红串红球菌 | 0.053 | 14.170 | 1.71×10-59 |
人乙型疱疹病毒5 | <0.001 | 1.490 | 0.014 |
微生物名称 | CP/% | SP/% | P值 |
---|---|---|---|
革兰阴性菌 | |||
麦芽寡养单胞菌 | 14.590 | 48.810 | 1.01×10-60 |
食酸菌sp. KKS102 | 0.470 | 2.900 | 1.04×10-56 |
皮氏罗尔斯顿菌 | 0.930 | 2.540 | 1.16×10-35 |
屎肠球菌 | 0.002 | 2.530 | 1.92×10-3 |
红串红球菌 | 0.053 | 14.170 | 1.71×10-59 |
人乙型疱疹病毒5 | <0.001 | 1.490 | 0.014 |
微生物名称 | 血培养 | NGS | 本研究 |
---|---|---|---|
前期研究[ | |||
光滑念珠菌 | + | ||
鼠李糖乳酸杆菌 | + | + | |
副干酪乳杆菌 | + | + | |
经黏液真杆菌. | + | + | |
金黄色葡萄球菌 | + | + | |
阴沟肠杆菌 | + | + | |
普通拟杆菌 | + | + | |
肺炎克雷伯菌 | + | + | |
肠道沙门菌 | + | + | |
假单胞菌属门多萨菌 | + | + | |
多形拟杆菌 | + | + | |
大肠埃希菌 | + | + | + |
白念珠菌 | + | + | |
脆弱拟杆菌 | + | + | + |
本研究 | |||
屎肠球菌 | + | + | + |
人乙型疱疹病毒5 | + | + | |
麦芽寡养单胞菌 | + | ||
食酸菌sp. KKS102 | + | ||
红串红球菌 | + | ||
皮氏罗尔斯顿菌 | + |
微生物名称 | 血培养 | NGS | 本研究 |
---|---|---|---|
前期研究[ | |||
光滑念珠菌 | + | ||
鼠李糖乳酸杆菌 | + | + | |
副干酪乳杆菌 | + | + | |
经黏液真杆菌. | + | + | |
金黄色葡萄球菌 | + | + | |
阴沟肠杆菌 | + | + | |
普通拟杆菌 | + | + | |
肺炎克雷伯菌 | + | + | |
肠道沙门菌 | + | + | |
假单胞菌属门多萨菌 | + | + | |
多形拟杆菌 | + | + | |
大肠埃希菌 | + | + | + |
白念珠菌 | + | + | |
脆弱拟杆菌 | + | + | + |
本研究 | |||
屎肠球菌 | + | + | + |
人乙型疱疹病毒5 | + | + | |
麦芽寡养单胞菌 | + | ||
食酸菌sp. KKS102 | + | ||
红串红球菌 | + | ||
皮氏罗尔斯顿菌 | + |
[1] |
CINDOLO L, CASTELLAN P, SCOFFONE C M, et al. Mortality and flexible ureteroscopy:analysis of six cases[J]. World J Urol, 2016, 34(3):305-310.
DOI URL |
[2] |
SINGER M, DEUTSCHMAN C S, SEYMOUR C W, et al. The third international consensus definitions for sepsis and septic shock(sepsis-3)[J]. JAMA, 2016, 315(8):801-810.
DOI URL |
[3] | 刘超, 韩志英. 儿童侵袭性肺炎链球菌疾病研究进展[J]. 国际儿科学杂志, 2021, 48(4):262-266. |
[4] | 张晶晶, 陈旭义, 孙世中, 等. 大肠杆菌亚型致脓毒症模型比较研究[J]. 天津医药, 2018, 46(6):585-589. |
[5] | 王海军, 赵俭, 王帅. 小儿重度烧伤绿脓杆菌脓毒症4例[J]. 创伤与急危重病医学, 2018, 6(5):342. |
[6] | 张林, 陈仲祥. 2013—2017年ICU脓毒症患者临床特征及病原菌学分析[J]. 国际检验医学杂志, 2019, 41(7):794-797. |
[7] | 赵威云, 胡小倩, 赵瑞艳, 等. RNAi沉默TREM-1对白假丝酵母感染脓毒症大鼠多器官损害的机制[J]. 中华医院感染学杂志, 2021, 31(20):3094-3098. |
[8] | 许天琪, 张佳, 薛晓艳. ICU脓毒症患者潜伏性病毒携带状况分析[J]. 解放军医学院学报, 2018, 39(6):515-519. |
[9] | ABRIL M K, BARNETT A S, WEGERMANN K, et al. Diagnosis of Capnocytophaga canimorsus sepsis by whole-genome next-generation sequencing[J]. Open Forum Infectious Dis, 2016, 3(3):ofw144. |
[10] | 王聪慧, 陈晨, 王晓锋, 等. 基于游离DNA单分子标签检测技术的眼皮肤白化病Ⅰ型的无创产前检测[J]. 中华医学遗传学杂志, 2021, 38(4):317-320. |
[11] | 王研静, 孙吉瑞, 张金库. 循环游离DNA在乳腺癌临床应用的研究进展[J]. 中国综合临床, 2021, 37(3):229-231. |
[12] | 郎吉萍, 苗芸. 细胞游离DNA在器官移植中的应用[J]. 器官移植, 2018, 9(6):460-462. |
[13] | FERNÁNDEZ-CARBALLO B L, BROGER T, WYSS R, et al. Toward the development of a circulating free DNA-based in vitro diagnostic test for infectious diseases:a review of evidence for tuberculosis[J]. J Clin Microbiol, 2019, 57(4):e01234. |
[14] |
HONG D K, BLAUWKAMP T A, KERTESZ M, et al. Liquid biopsy for infectious diseases:sequencing of cell-free plasma to detect pathogen DNA in patients with invasive fungal disease[J]. Diagn Microbiol Infect Dis, 2018, 92(3):210-213.
DOI URL |
[15] |
GRUMAZ S, GRUMAZ C, VAINSHTEIN Y, et al. Enhanced performance of next-generation sequencing diagnostics compared with standard of care microbiological diagnostics in patients suffering from septic shock[J]. Crit Care Med, 2019, 47(5):e394-e402.
DOI URL |
[16] |
GRUMAZ S, STEVENS P, GRUMAZ C, et al. Next-generation sequencing diagnostics of bacteremia in septic patients[J]. Genome Med, 2016, 8(1):73.
DOI PMID |
[17] |
HU Y L, PANG W, HUANG Y, et al. The gastric microbiome is perturbed in advanced gastric adenocarcinoma identified through shotgun metagenomics[J]. Front Cell Infect Microbiol, 2018, 8:433.
DOI URL |
[18] |
TAYLOR W S, PEARSON J, MILLER A, et al. MinION sequencing of colorectal cancer tumour microbiomes-a comparison with amplicon-based and RNA-sequencing[J]. PLoS One, 2020, 15(5):e0233170.
DOI URL |
[19] |
BROWNE H P, FORSTER S C, ANONYE B O, et al. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation[J]. Nature, 2016, 533(7604):543-546.
DOI |
[20] |
DUAN Z, QIN J, LIU Y, et al. Molecular epidemiology and risk factors of Stenotrophomonas maltophilia infections in a Chinese teaching hospital[J]. BMC Microbiol, 2020, 20(1):294.
DOI |
[21] |
CHEN Y Y, HUANG W T, CHEN C P, et al. An outbreak of Ralstonia Pickettii bloodstream infection associated with an intrinsically contaminated normal saline solution[J]. Infect Control Hosp Epidemiol, 2017, 38(4):444-448.
DOI URL |
[22] |
JAHANSEPAS A, AGHAZADEH M, REZAEE M A, et al. Occurrence of Enterococcus faecalis and Enterococcus faecium in various clinical infections:detection of their drug resistance and virulence determinants[J]. Microb Drug Resist, 2018, 24(1):76-82.
DOI URL |
[23] |
MUTLU M, KADER S, ASLAN Y. A dangerous causative microorganism of early onset neonatal sepsis:Stenotrophomonas maltophilia. Two case reports and a review of the literature[J]. J Matern Fetal Neonatal Med, 2021, 35:6077-6079.
DOI URL |
[24] | SANTOS V M. To:Ralstonia pickettii bacteremia in hemodialysis patients:a report of two cases[J]. Rev Bras Ter Intensiva, 2016, 28(4):488-489. |
[25] | HUANG X Q, QIU J K, WANG C H, et al. Sepsis secondary to multifocal Enterococcus faecium infection:a case report[J]. Medicine(Baltimore), 2020, 99(27):e19811. |
[26] |
ADAK A, KHAN M R. An insight into gut microbiota and its functionalities[J]. Cell Mol Life Sci, 2019, 76(3):473-493.
DOI PMID |
[27] |
LANKELMA J M, VAN VUGHT L A, BELZER C, et al. Critically ill patients demonstrate large interpersonal variation in intestinal microbiota dysregulation:a pilot study[J]. Intensive Care Med, 2017, 43(1):59-68.
DOI URL |
[28] |
WISCHMEYER P E, MCDONALD D, KNIGHT R. Role of the microbiome,probiotics,and 'dysbiosis therapy' in critical illness[J]. Curr Opin Crit Care, 2016, 22(4):347-353.
DOI URL |
[29] |
GOSIEWSKI T, LUDWIG-GALEZOWSKA A H, HUMINSKA K, et al. Comprehensive detection and identification of bacterial DNA in the blood of patients with sepsis and healthy volunteers using next-generation sequencing method-the observation of DNAemia[J]. Eur J Clin Microbiol Infect Dis, 2017, 36(2):329-336.
DOI URL |
[30] |
DOUDAKMANIS C, BOULIARIS K, KOLLA C, et al. Bacterial translocation in patients undergoing major gastrointestinal surgery and its role in postoperative sepsis[J]. World J Gastrointest Pathophysiol, 2021, 12(6):106-114.
DOI PMID |
[31] |
PARK S D, UH Y, JANG I H, et al. Rhodococcus erythropolis septicaemia in a patient with acute lymphocytic leukaemia[J]. J Med Microbiol, 2011, 60(Pt 2):252-255.
DOI URL |
[32] |
SHETTY A, BARNES R A, HEALY B, et al. A case of sepsis caused by Acidovorax[J]. J Infect, 2005, 51(3):e171-e172.
DOI URL |
[33] |
BABA H, NADA T, OHKUSU K, et al. First case of bloodstream infection caused by Rhodococcus erythropolis[J]. J Clin Microbiol, 2009, 47(8):2667-2669.
DOI URL |
[34] |
MALKAN A D, STROLLO W, SCHOLAND S J, et al. Implanted-port-catheter-related sepsis caused by Acidovorax avenae and methicillin-sensitive Staphylococcus aureus[J]. J Clin Microbiol, 2009, 47(10):3358-3361.
DOI URL |
[35] |
SAXENA R, DHAKAN D B, MITTAL P, et al. Metagenomic analysis of hot springs in central india reveals hydrocarbon degrading thermophiles and pathways essential for survival in extreme environments[J]. Front Microbiol, 2016, 7:2123.
DOI PMID |
[36] |
MARANDU T, DOMBEK M, COOK C H. Impact of cytomegalovirus load on host response to sepsis[J]. Med Microbiol Immunol, 2019, 208(3-4):295-303.
DOI |
[37] |
IMLAY H, LIMAYE A P. Current understanding of cytomegalovirus reactivation in critical illness[J]. J Infect Dis, 2020, 221(Suppl 1):S94-S102.
DOI URL |
[38] |
RAZONABLE R R, FANNING C, BROWN R A, et al. Selective reactivation of human herpesvirus 6 variant a occurs in critically ill immunocompetent hosts[J]. J Infect Dis, 2002, 185(1):110-113.
PMID |
[39] |
ORSBORNE C, HARDY A, ISALSKA B, et al. Acidovorax oryzae catheter-associated bloodstream infection[J]. J Clin Microbiol, 2014, 52(12):4421-4424.
DOI URL |
[40] |
WEI Y, YANG J, WANG J, et al. Successful treatment with fecal microbiota transplantation in patients with multiple organ dysfunction syndrome and diarrhea following severe sepsis[J]. Crit Care, 2016, 20(1):332.
DOI URL |
[1] | PAN Xilong, XU Zhiyuan, XIE Feng, LI Dan. Role of procalcitonin in the diagnosis of different sepsis [J]. Laboratory Medicine, 2021, 36(12): 1215-1218. |
[2] | HU Senan, AI Honghong, YE Xuelian, CHENG Jiangyan. Relationship between complement 3,interleukin 35 and the severity and prognosis of sepsis [J]. Laboratory Medicine, 2021, 36(1): 25-29. |
[3] | FU Jing, TU Xing. Serum high mobility group box-1 expression in patients with sepsis caused by bacteria and its clinical significant [J]. Laboratory Medicine, 2021, 36(1): 80-83. |
[4] | CHEN Xiaoyan. Serum procalcitonin level for guiding the discontinuation of antibiotics in patients with urinary sepsis [J]. Laboratory Medicine, 2018, 33(9): 794-797. |
[5] | ZHANG Cui. Expression levels of microRNA-132 and high-mobility group box-1 protein in peripheral blood mononuclear cells of children with sepsis [J]. Laboratory Medicine, 2018, 33(9): 815-818. |
[6] | SONG Hui, KONG Feifei, LIU Xuan, SHI Cuiming, CHANG Min, WANYAN Xinrui. Roles of reticulated platelet and related parameters in children with immunological thrombocytopenia and sepsis [J]. Laboratory Medicine, 2018, 33(7): 626-628. |
[7] | HU Yao. Procalcitonin for the diagnosis and monitoring of infectious diseases [J]. Laboratory Medicine, 2017, 32(3): 234-239. |
[8] | XIN Na, JING Fahong, LI Jingmei, MU Yudong. Serum soluble triggering receptor expressed on myeloid cell-1 in the diagnosis of sepsis [J]. Laboratory Medicine, 2017, 32(12): 1114-1117. |
[9] | LIAO Juan, LIN Lixing, LI Yangyu, QIN Xuejun, ZHOU Zixin, CHEN Rongyan, SONG Yanfang, LIN Qing. sCD14-ST in the early diagnosis of sepsis [J]. Laboratory Medicine, 2016, 31(7): 562-566. |
[10] | CONG Hui, JING Rongrong, WANG Huimin, WU Xiaohui, CHU Haidan, FAN Mengkang, JU Shaoqin. Plasma cell-free DNA as a biomarker for the diagnosis of acute coronary syndrome [J]. Laboratory Medicine, 2016, 31(12): 1021-1025. |
[11] | XU Cheng, XU Yuanhong. The research progress of early warning biomarker for sepsis [J]. Laboratory Medicine, 2015, 30(5): 533-536. |
[12] | WANG Lejian, SHI Chunjuan, LI Fei, ZHANG Xiwen. Early diagnosis significance of immature granulocyte flag in patients with sepsis [J]. Laboratory Medicine, 2015, 30(3): 238-239. |
[13] | YAN Feng, REN Zhenhuan, ZHOU Ying. Difference cause analysis on thrombocytopenia by different bacterial infections in patients with sepsis [J]. Laboratory Medicine, 2015, 30(2): 137-140. |
[14] | CAO Yanlin, LIU Debei, XIA Xiankao.. The clinical significance of serum procalcitonin and high-sensitivity C reactive protein in neonatal pneumonia and sepsis patients [J]. , 2014, 29(10): 1000-1003. |
[15] | WANG Wenjuan 1,WANG Hao 2,CHEN Zhe 3. The application significance of CD64 index and WBC for the early diagnosis and prognosis of sepsis in children [J]. , 2013, 28(5): 416-419. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||