Laboratory Medicine ›› 2022, Vol. 37 ›› Issue (1): 1-10.DOI: 10.3969/j.issn.1673-8640.2022.01.001
MENG Jun1, WANG Junqing2, FEI Xiaochun3, GU Zhidong1(
)
Received:2021-04-05
Revised:2021-08-12
Online:2022-01-30
Published:2022-03-07
Contact:
GU Zhidong
CLC Number:
MENG Jun, WANG Junqing, FEI Xiaochun, GU Zhidong. Establishment and validation of a plasma exosome-derived circular RNA model for HCC diagnosis[J]. Laboratory Medicine, 2022, 37(1): 1-10.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2022.01.001
| 组别 | 例数 | 性别 | HBsAg① | 肝硬化 | 肿瘤数 | ||||
|---|---|---|---|---|---|---|---|---|---|
| 男性 | 女性 | 阴性 | 阳性 | 无 | 有 | 单个 | 多个 | ||
| 训练集 | 126 | 104 | 22 | 14 | 112 | 26 | 100 | 94 | 32 |
| 验证集 | 105 | 97 | 8 | 11 | 94 | 20 | 85 | 82 | 23 |
| 统计值 | 4.909 | 0.024 | 0.090 | 0.385 | |||||
| P值 | 0.027 | 0.877 | 0.764 | 0.535 | |||||
| 组别 | 肿瘤大小 | 病理分期 | AFP② | 巴塞罗那分期 | |||||
| ≤5 cm | >5 cm | Ⅰ~Ⅱ期 | Ⅲ~Ⅳ期 | ≤20 ng/mL | >20 ng/mL | 0+A期 | B+C期 | ||
| 训练集 | 82 | 44 | 73 | 53 | 48 | 78 | 90 | 36 | |
| 验证集 | 65 | 40 | 69 | 36 | 47 | 58 | 79 | 26 | |
| 统计值 | 0.249 | 1.463 | 1.051 | 0.423 | |||||
| P值 | 0.618 | 0.226 | 0.305 | 0.515 | |||||
| 组别 | 例数 | 性别 | HBsAg① | 肝硬化 | 肿瘤数 | ||||
|---|---|---|---|---|---|---|---|---|---|
| 男性 | 女性 | 阴性 | 阳性 | 无 | 有 | 单个 | 多个 | ||
| 训练集 | 126 | 104 | 22 | 14 | 112 | 26 | 100 | 94 | 32 |
| 验证集 | 105 | 97 | 8 | 11 | 94 | 20 | 85 | 82 | 23 |
| 统计值 | 4.909 | 0.024 | 0.090 | 0.385 | |||||
| P值 | 0.027 | 0.877 | 0.764 | 0.535 | |||||
| 组别 | 肿瘤大小 | 病理分期 | AFP② | 巴塞罗那分期 | |||||
| ≤5 cm | >5 cm | Ⅰ~Ⅱ期 | Ⅲ~Ⅳ期 | ≤20 ng/mL | >20 ng/mL | 0+A期 | B+C期 | ||
| 训练集 | 82 | 44 | 73 | 53 | 48 | 78 | 90 | 36 | |
| 验证集 | 65 | 40 | 69 | 36 | 47 | 58 | 79 | 26 | |
| 统计值 | 0.249 | 1.463 | 1.051 | 0.423 | |||||
| P值 | 0.618 | 0.226 | 0.305 | 0.515 | |||||
| 项目 | AUC(95%CI ①) | 最佳临界值 | 敏感性/% | 特异性/% | 阳性似然比 | 阴性似然比 | Youden指数 |
|---|---|---|---|---|---|---|---|
| AFP | 0.768(0.707~0.821) | 20 ng/mL | 61.90 | 89.00 | 5.63 | 0.43 | 0.50 |
| circ_0000690 | 0.802(0.744~0.852) | 2 | 49.21 | 94.00 | 8.20 | 0.54 | 0.43 |
| circ_0001359 | 0.726(0.662~0.783) | 2 | 52.38 | 89.00 | 4.76 | 0.54 | 0.41 |
| circ_0000396 | 0.621(0.554~0.684) | 2 | 34.13 | 87.00 | 2.44 | 0.77 | 0.20 |
| 联合检测模型 | 0.886(0.837~0.924) | 0.56 | 76.98 | 87.00 | 5.92 | 0.26 | 0.64 |
| 项目 | AUC(95%CI ①) | 最佳临界值 | 敏感性/% | 特异性/% | 阳性似然比 | 阴性似然比 | Youden指数 |
|---|---|---|---|---|---|---|---|
| AFP | 0.768(0.707~0.821) | 20 ng/mL | 61.90 | 89.00 | 5.63 | 0.43 | 0.50 |
| circ_0000690 | 0.802(0.744~0.852) | 2 | 49.21 | 94.00 | 8.20 | 0.54 | 0.43 |
| circ_0001359 | 0.726(0.662~0.783) | 2 | 52.38 | 89.00 | 4.76 | 0.54 | 0.41 |
| circ_0000396 | 0.621(0.554~0.684) | 2 | 34.13 | 87.00 | 2.44 | 0.77 | 0.20 |
| 联合检测模型 | 0.886(0.837~0.924) | 0.56 | 76.98 | 87.00 | 5.92 | 0.26 | 0.64 |
| 项目 | AUC(95%CI) | 最佳临界值 | 敏感性/% | 特异性/% | 阳性似然比 | 阴性似然比 | Youden指数 |
|---|---|---|---|---|---|---|---|
| AFP | 0.762(0.696~0.820) | 20 ng/mL | 60.64 | 89.00 | 5.51 | 0.44 | 0.50 |
| circ_0000690 | 0.767(0.701~0.825) | 2 | 41.49 | 94.00 | 6.91 | 0.62 | 0.35 |
| circ_0001359 | 0.698(0.628~0.762) | 2 | 47.87 | 89.00 | 4.35 | 0.59 | 0.37 |
| circ_0000396 | 0.611(0.538~0.680) | 2 | 35.11 | 87.00 | 2.70 | 0.75 | 0.22 |
| 联合检测模型 | 0.859(0.802~0.904) | 0.56 | 72.34 | 87.00 | 5.56 | 0.32 | 0.59 |
| 项目 | AUC(95%CI) | 最佳临界值 | 敏感性/% | 特异性/% | 阳性似然比 | 阴性似然比 | Youden指数 |
|---|---|---|---|---|---|---|---|
| AFP | 0.762(0.696~0.820) | 20 ng/mL | 60.64 | 89.00 | 5.51 | 0.44 | 0.50 |
| circ_0000690 | 0.767(0.701~0.825) | 2 | 41.49 | 94.00 | 6.91 | 0.62 | 0.35 |
| circ_0001359 | 0.698(0.628~0.762) | 2 | 47.87 | 89.00 | 4.35 | 0.59 | 0.37 |
| circ_0000396 | 0.611(0.538~0.680) | 2 | 35.11 | 87.00 | 2.70 | 0.75 | 0.22 |
| 联合检测模型 | 0.859(0.802~0.904) | 0.56 | 72.34 | 87.00 | 5.56 | 0.32 | 0.59 |
| 项目 | AUC(95%CI) | 最佳临界值 | 敏感性/% | 特异性/% | 阳性似然比 | 阴性似然比 | Youden指数 |
|---|---|---|---|---|---|---|---|
| AFP | 0.750(0.684~0.807) | 20 ng/mL | 55.24 | 89.00 | 5.02 | 0.50 | 0.44 |
| circ_0000690 | 0.752(0.687~0.809) | 2 | 56.19 | 95.00 | 11.24 | 0.46 | 0.51 |
| circ_0001359 | 0.663(0.594~0.727) | 2 | 42.86 | 88.00 | 3.25 | 0.69 | 0.31 |
| circ_0000396 | 0.615(0.545~0.682) | 2 | 30.48 | 88.00 | 2.54 | 0.79 | 0.18 |
| 联合检测模型 | 0.847(0.790~0.893) | 0.56 | 76.19 | 82.00 | 4.23 | 0.29 | 0.58 |
| 项目 | AUC(95%CI) | 最佳临界值 | 敏感性/% | 特异性/% | 阳性似然比 | 阴性似然比 | Youden指数 |
|---|---|---|---|---|---|---|---|
| AFP | 0.750(0.684~0.807) | 20 ng/mL | 55.24 | 89.00 | 5.02 | 0.50 | 0.44 |
| circ_0000690 | 0.752(0.687~0.809) | 2 | 56.19 | 95.00 | 11.24 | 0.46 | 0.51 |
| circ_0001359 | 0.663(0.594~0.727) | 2 | 42.86 | 88.00 | 3.25 | 0.69 | 0.31 |
| circ_0000396 | 0.615(0.545~0.682) | 2 | 30.48 | 88.00 | 2.54 | 0.79 | 0.18 |
| 联合检测模型 | 0.847(0.790~0.893) | 0.56 | 76.19 | 82.00 | 4.23 | 0.29 | 0.58 |
| 项目 | AUC(95%CI) | 最佳临界值 | 敏感性/% | 特异性/% | 阳性似然比 | 阴性似然比 | Youden指数 |
|---|---|---|---|---|---|---|---|
| AFP | 0.761(0.692~0.822) | 20 ng/mL | 58.75 | 89.00 | 5.34 | 0.46 | 0.48 |
| circ_0000690 | 0.763(0.694~0.823) | 2 | 56.25 | 95.00 | 11.25 | 0.46 | 0.51 |
| circ_0001359 | 0.673(0.599~0.741) | 2 | 47.50 | 88.00 | 3.96 | 0.60 | 0.36 |
| circ_0000396 | 0.591(0.516~0.664) | 2 | 25.00 | 88.00 | 2.08 | 0.85 | 0.13 |
| 联合检测模型 | 0.845(0.783~0.894) | 0.56 | 76.25 | 82.00 | 4.24 | 0.29 | 0.58 |
| 项目 | AUC(95%CI) | 最佳临界值 | 敏感性/% | 特异性/% | 阳性似然比 | 阴性似然比 | Youden指数 |
|---|---|---|---|---|---|---|---|
| AFP | 0.761(0.692~0.822) | 20 ng/mL | 58.75 | 89.00 | 5.34 | 0.46 | 0.48 |
| circ_0000690 | 0.763(0.694~0.823) | 2 | 56.25 | 95.00 | 11.25 | 0.46 | 0.51 |
| circ_0001359 | 0.673(0.599~0.741) | 2 | 47.50 | 88.00 | 3.96 | 0.60 | 0.36 |
| circ_0000396 | 0.591(0.516~0.664) | 2 | 25.00 | 88.00 | 2.08 | 0.85 | 0.13 |
| 联合检测模型 | 0.845(0.783~0.894) | 0.56 | 76.25 | 82.00 | 4.24 | 0.29 | 0.58 |
| 项目 | AUC(95%CI) | 最佳临界值 | 敏感性/% | 特异性/% | 阳性似然比 | 阴性似然比 | Youden指数 |
|---|---|---|---|---|---|---|---|
| circ_0000690 | 0.810(0.737~0.870) | 2 | 54.17 | 94.00 | 9.03 | 0.49 | 0.48 |
| circ_0001359 | 0.695(0.614~0.768) | 2 | 50.00 | 92.00 | 6.25 | 0.54 | 0.42 |
| circ_0000396 | 0.588(0.504~0.668) | 2 | 25.00 | 87.00 | 1.92 | 0.86 | 0.12 |
| 联合检测模型 | 0.894(0.833~0.938) | 0.56 | 81.25 | 87.00 | 6.25 | 0.22 | 0.68 |
| 项目 | AUC(95%CI) | 最佳临界值 | 敏感性/% | 特异性/% | 阳性似然比 | 阴性似然比 | Youden指数 |
|---|---|---|---|---|---|---|---|
| circ_0000690 | 0.810(0.737~0.870) | 2 | 54.17 | 94.00 | 9.03 | 0.49 | 0.48 |
| circ_0001359 | 0.695(0.614~0.768) | 2 | 50.00 | 92.00 | 6.25 | 0.54 | 0.42 |
| circ_0000396 | 0.588(0.504~0.668) | 2 | 25.00 | 87.00 | 1.92 | 0.86 | 0.12 |
| 联合检测模型 | 0.894(0.833~0.938) | 0.56 | 81.25 | 87.00 | 6.25 | 0.22 | 0.68 |
| 项目 | AUC(95%CI) | 最佳临界值 | 敏感性/% | 特异性/% | 阳性似然比 | 阴性似然比 | Youden指数 |
|---|---|---|---|---|---|---|---|
| circ_0000690 | 0.786(0.708~0.852) | 2 | 48.65 | 94.00 | 8.11 | 0.55 | 0.43 |
| circ_0001359 | 0.672(0.587~0.750) | 2 | 45.95 | 92.00 | 5.74 | 0.59 | 0.38 |
| circ_0000396 | 0.574(0.487~0.658) | 2 | 29.73 | 87.00 | 2.29 | 0.81 | 0.17 |
| 联合检测模型 | 0.877(0.810~0.927) | 0.56 | 78.38 | 88.00 | 6.53 | 0.25 | 0.66 |
| 项目 | AUC(95%CI) | 最佳临界值 | 敏感性/% | 特异性/% | 阳性似然比 | 阴性似然比 | Youden指数 |
|---|---|---|---|---|---|---|---|
| circ_0000690 | 0.786(0.708~0.852) | 2 | 48.65 | 94.00 | 8.11 | 0.55 | 0.43 |
| circ_0001359 | 0.672(0.587~0.750) | 2 | 45.95 | 92.00 | 5.74 | 0.59 | 0.38 |
| circ_0000396 | 0.574(0.487~0.658) | 2 | 29.73 | 87.00 | 2.29 | 0.81 | 0.17 |
| 联合检测模型 | 0.877(0.810~0.927) | 0.56 | 78.38 | 88.00 | 6.53 | 0.25 | 0.66 |
| 项目 | AUC(95%CI) | 最佳临界值 | 敏感性/% | 特异性/% | 阳性似然比 | 阴性似然比 | Youden指数 |
|---|---|---|---|---|---|---|---|
| circ_0000690 | 0.702(0.621~0.775) | 2 | 48.94 | 96.00 | 12.23 | 0.53 | 0.45 |
| circ_0001359 | 0.670(0.588~0.745) | 2 | 42.55 | 91.00 | 4.73 | 0.63 | 0.34 |
| circ_0000396 | 0.641(0.557~0.718) | 2 | 38.30 | 88.00 | 3.19 | 0.70 | 0.26 |
| 联合检测模型 | 0.840(0.771~0.895) | 0.56 | 74.47 | 90.00 | 7.45 | 0.28 | 0.64 |
| 项目 | AUC(95%CI) | 最佳临界值 | 敏感性/% | 特异性/% | 阳性似然比 | 阴性似然比 | Youden指数 |
|---|---|---|---|---|---|---|---|
| circ_0000690 | 0.702(0.621~0.775) | 2 | 48.94 | 96.00 | 12.23 | 0.53 | 0.45 |
| circ_0001359 | 0.670(0.588~0.745) | 2 | 42.55 | 91.00 | 4.73 | 0.63 | 0.34 |
| circ_0000396 | 0.641(0.557~0.718) | 2 | 38.30 | 88.00 | 3.19 | 0.70 | 0.26 |
| 联合检测模型 | 0.840(0.771~0.895) | 0.56 | 74.47 | 90.00 | 7.45 | 0.28 | 0.64 |
| 项目 | AUC(95%CI) | 最佳临界值 | 敏感性/% | 特异性/% | 阳性似然比 | 阴性似然比 | Youden指数 |
|---|---|---|---|---|---|---|---|
| circ_0000690 | 0.747(0.664~0.818) | 2 | 54.55 | 96.00 | 13.64 | 0.47 | 0.51 |
| circ_0001359 | 0.669(0.583~0.748) | 2 | 45.45 | 91.00 | 5.05 | 0.60 | 0.36 |
| circ_0000396 | 0.587(0.498~0.671) | 2 | 27.27 | 88.00 | 2.27 | 0.83 | 0.15 |
| 联合检测模型 | 0.846(0.773~0.903) | 0.56 | 75.76 | 91.00 | 8.42 | 0.27 | 0.67 |
| 项目 | AUC(95%CI) | 最佳临界值 | 敏感性/% | 特异性/% | 阳性似然比 | 阴性似然比 | Youden指数 |
|---|---|---|---|---|---|---|---|
| circ_0000690 | 0.747(0.664~0.818) | 2 | 54.55 | 96.00 | 13.64 | 0.47 | 0.51 |
| circ_0001359 | 0.669(0.583~0.748) | 2 | 45.45 | 91.00 | 5.05 | 0.60 | 0.36 |
| circ_0000396 | 0.587(0.498~0.671) | 2 | 27.27 | 88.00 | 2.27 | 0.83 | 0.15 |
| 联合检测模型 | 0.846(0.773~0.903) | 0.56 | 75.76 | 91.00 | 8.42 | 0.27 | 0.67 |
| [1] |
RAJESH J, SARKAR D. Association of adipose tissue and adipokines with development of obesity-induced liver cancer[J]. Int J Mol Sci, 2021, 22(4):2163.
DOI URL |
| [2] |
GE Y, MU W, BA Q, et al. Hepatocellular carcinoma-derived exosomes in organotropic metastasis,recurrence and early diagnosis application[J]. Cancer Lett, 2020, 477:41-48.
DOI URL |
| [3] |
LI C, YANG J, LIU C, et al. Long non-coding RNAs in hepatocellular carcinoma:ordering of the complicated lncRNA regulatory network and novel strategies for HCC clinical diagnosis and treatment[J]. Pharmacol Res, 2020, 158:104848.
DOI URL |
| [4] |
ZHANG P F, GAO C, HUANG X Y, et al. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma[J]. Mol Cancer, 2020, 19(1):110.
DOI URL |
| [5] |
WANG S, ZHANG K, TAN S, et al. Circular RNAs in body fluids as cancer biomarkers:the new frontier of liquid biopsies[J]. Mol Cancer, 2021, 20(1):13.
DOI URL |
| [6] | LI S, YI M, DONG B, et al. The roles of exosomes in cancer drug resistance and its therapeutic application[J]. Clin Transl Med, 2020, 10(8):e257. |
| [7] |
XU Y, KONG S, QIN S, et al. Exosomal circRNA:sorting mechanisms,roles and clinical applications in tumors[J]. Front Cell Dev Biol, 2020, 8:581558.
DOI URL |
| [8] |
LYU L, YANG W, YAO J, et al. The diagnostic value of plasma exosomal hsa_circ_0070396 for hepatocellular carcinoma[J]. Biomark Med, 2021, 15(5):359-371.
DOI URL |
| [9] |
SUN X H, WANG Y T, LI G F, et al. Serum-derived three-circRNA signature as a diagnostic biomarker for hepatocellular carcinoma[J]. Cancer Cell Int, 2020, 20:226.
DOI URL |
| [10] |
WANG T, ZHANG K H. New blood biomarkers for the diagnosis of AFP-negative hepatocellular carcinoma[J]. Front Oncol, 2020, 10:1316.
DOI URL |
| [11] | WANG W, WEI C. Advances in the early diagnosis of hepatocellular carcinoma[J]. Genes Dis, 2020, 7(3):308-319. |
| [1] | MA Xiaolu, GUO Lin, LU Renquan. Clinical value and application prospect of circulating biomarkers in hepatocellular carcinoma patients [J]. Laboratory Medicine, 2025, 40(4): 309-316. |
| [2] | TIAN Ze, LIU Hongrui, SI Wenzhe. Research progress of exosomal miRNA as biomarkers of hepatocellular carcinoma [J]. Laboratory Medicine, 2025, 40(4): 317-323. |
| [3] | SUN Haiqing, LIU Ning, LOU Jinli, YU Yanhua. Clinical role of STIP1 and AFP-L3 combined determination in diagnosing HCC [J]. Laboratory Medicine, 2025, 40(4): 324-330. |
| [4] | ZHU Jing, ZHANG Rulin, WU Jun. Expressions of CCNB1,PTTG1 and CBX3 in hepatocellular carcinoma and their roles in prognostic assessment [J]. Laboratory Medicine, 2025, 40(4): 331-337. |
| [5] | WANG Xiaolong, CHEN Yuanbin. Relationship between serum cell division cyclin 42 and clinicopathological characteristics and prognosis of AFP-negative hepatocellular carcinoma patients [J]. Laboratory Medicine, 2025, 40(3): 259-263. |
| [6] | LIU Chunyan, NIU Shumin, DENG Zhaohui, LIANG Mengjie, ZHANG Xin. Establishing the reference ranges for AFP,CEA,CA72-4 and CA19-9 in Urumqi region by indirect method [J]. Laboratory Medicine, 2025, 40(11): 1053-1058. |
| [7] | DONG Yihan, LIU Shiming, WANG Yong, YUE Dan, WANG Rui. Research progress of exosome extraction and identification in renal cancer [J]. Laboratory Medicine, 2025, 40(11): 1118-1125. |
| [8] | LIU Ruishan, LONG Fengming, ZOU Chengli. Role of serum exosomal miR-93-5p determination in children with bronchial asthma [J]. Laboratory Medicine, 2024, 39(5): 449-453. |
| [9] | WANG Rong, GAO Chunfang. Application progress of exosomal glycosylation in diagnosis and treatment of tumors [J]. Laboratory Medicine, 2024, 39(4): 404-409. |
| [10] | LIU Yang, HE Chengshan, JIANG Xiudi, LU Zhicheng. HBV PreS/S region gene mutation inducing hepatocyte endoplasmic reticulum stress causing hepatocellular carcinoma [J]. Laboratory Medicine, 2024, 39(12): 1229-1233. |
| [11] | CUI Xiaoyang, LIU Guodong, GUO Huijuan, LIAO Zhihong, LIU Yunhong, ZHANG Weifen, CHEN Zirao, WEI Xiaozhu. Roles of serum exosomal CEA,CA15-3 and CA125 in the differential diagnosis of non-small cell lung cancer and benign lung diseases [J]. Laboratory Medicine, 2024, 39(11): 1035-1041. |
| [12] | LIU Junru, LI Meng, XU Yang, ZHENG Weiying. Roles of urinary exosome miR-27a,miR-27b,miR-29c,miR-200c in diagnosis of early diabetic nephropathy [J]. Laboratory Medicine, 2024, 39(11): 1053-1059. |
| [13] | LIU Jianxing, WANG Jinpeng, GENG Xinlong, WANG Shan. Role of urinary exosome miR-214 expression in diagnosis and prognosis assessment of clear cell renal cell carcinoma [J]. Laboratory Medicine, 2024, 39(10): 969-974. |
| [14] | Clinical Laboratory Society of Chinese Association for Rehabilitation Medicine , Molecular Diagnostics Society of Shanghai Medical Association , Tumor Immunology Branch of Shanghai Society for Immunology , Yueyang Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai University of Traditional Chinese Medicine , Shanghai Center for Clinical Laboratory, Clinical Laboratory Society of Chinese Association of Integrative Medicine , Clinical Laboratory Society of Shanghai Anticancer Association , Tumor Markers Society of Shanghai Anticancer Association . Expert consensus on the clinical application of AFP,AFP-L3% and DCP using GALAD and GALAD-like models in hepatocellular carcinoma [J]. Laboratory Medicine, 2023, 38(7): 607-623. |
| [15] | CHEN Wenju, ZHOU Yong, XU Jiajia, WANG Pan. Role of serum exosomal miR-23b-3p and miR-4429 in patients with hepatocellular carcinoma [J]. Laboratory Medicine, 2023, 38(7): 624-628. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||