检验医学 ›› 2025, Vol. 40 ›› Issue (2): 192-196.DOI: 10.3969/j.issn.1673-8640.2025.02.016
收稿日期:
2023-09-13
修回日期:
2024-02-28
出版日期:
2025-02-28
发布日期:
2025-03-07
通讯作者:
夏茂,E-mail: xiamao0126@163.com。
作者简介:
李博,男,1997年生,学士,初级检验师,主要从事临床检验工作。
LI Bo1, XIA Yongquan1, SHEN Ping1, XIA Mao1(), ZENG Jiawei2
Received:
2023-09-13
Revised:
2024-02-28
Online:
2025-02-28
Published:
2025-03-07
摘要:
恶性肿瘤与血栓发生密切相关。肿瘤相关血栓主要表现为自发性血管内凝血激活。目前,血栓及其相关并发症已经成为肿瘤患者死亡的第二大原因,仅次于肿瘤本身。恶性肿瘤患者血栓的发生机制较为复杂,不同肿瘤患者和恶性肿瘤进程的不同阶段会有明显差异,可能与血液高凝状态、血管壁损伤和血液淤滞有关。血栓形成的3个要素,即血流异常、血管完整性受损、血液成分改变,均与肿瘤患者的高血栓倾向有关,某些肿瘤诊疗方法也会增加发生肿瘤相关血栓的风险。如果肿瘤患者合并遗传性易栓症和获得性易栓因素,静脉血栓栓塞(VTE)的风险可升高数倍。文章对目前已知的肿瘤相关血栓主要的发生机制进行综述,以期为相关研究和临床诊治提供参考。
中图分类号:
李博, 夏永泉, 沈萍, 夏茂, 曾佳威. 肿瘤相关血栓的发生机制[J]. 检验医学, 2025, 40(2): 192-196.
LI Bo, XIA Yongquan, SHEN Ping, XIA Mao, ZENG Jiawei. Mechanisms of cancer-associated thrombosis[J]. Laboratory Medicine, 2025, 40(2): 192-196.
[1] |
KHORANA A A, MACKMAN N, FALANGA A, et al. Cancer-associated venous thromboembolism[J]. Nat Rev Dis Primers, 2022, 8(1):11.
DOI PMID |
[2] |
TIMP J F, BRAEKKAN S K, VERSTEEG H H, et al. Epidemiology of cancer-associated venous thrombosis[J]. Blood, 2013, 122(10):1712-1723.
DOI PMID |
[3] | HAMZA M S, MOUSA S A. Cancer-associated thrombosis:risk factors,molecular mechanisms,future management[J]. Clin Appl Thromb Hemost, 2020,26:1076029620954282. |
[4] | SANG Y, ROEST M, DE LAAT B, et al. Interplay between platelets and coagulation[J]. Blood Rev, 2021,46:100733. |
[5] | KIM A S, KHORANA A A, MCCRAE K R. Mechanisms and biomarkers of cancer-associated thrombosis[J]. Transl Res, 2020,225:33-53. |
[6] | GUAN J, JAKOB U. The protein scaffolding functions of polyphosphate[J]. J Mol Biol, 2024, 436(14):168504. |
[7] | DOCAMPO R. Advances in the cellular biology,biochemistry,and molecular biology of acidocalcisomes[J]. Microbiol Mol Biol Rev, 2024, 88(1):e0004223. |
[8] | BAKER C J, SMITH S A, MORRISSEY J H. Polyphosphate in thrombosis,hemostasis,and inflammation[J]. Res Pract Thromb Haemost, 2018, 3(1):18-25. |
[9] |
VERHOEF J J, BARENDRECHT A D, NICKEL K F, et al. Polyphosphate nanoparticles on the platelet surface trigger contact system activation[J]. Blood, 2017, 129(12):1707-1717.
DOI PMID |
[10] | TAFAZOLI A. Cancer procoagulant inhibitors:new drugs for an old target[J]. J Oncol Pharm Pract, 2022, 28(3):695-697. |
[11] |
FALANGA A, CONSONNI R, MARCHETTI M, et al. Cancer procoagulant and tissue factor are differently modulated by all-trans-retinoic acid in acute promyelocytic leukemia cells[J]. Blood, 1998, 92(1):143-151.
PMID |
[12] | LI S, WEI X, HE J, et al. Plasminogen activator inhibitor-1 in cancer research[J]. Biomed Pharmacother, 2018,105:83-94. |
[13] |
BRODSKY S V, MALINOWSKI K, GOLIGHTLY M, et al. Plasminogen activator inhibitor-1 promotes formation of endothelial microparticles with procoagulant potential[J]. Circulation, 2002, 106(18):2372-2378.
PMID |
[14] | NALLURI S R, CHU D, KERESZTES R, et al. Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients:a meta-analysis[J]. JAMA, 2008, 300(19):2277-2285. |
[15] | GARCIA J, HURWITZ H I, SANDLER A B, et al. Bevacizumab(Avastin®)in cancer treatment:a review of 15 years of clinical experience and future outlook[J]. Cancer Treat Rev, 2020,86:102017. |
[16] | PURDY M, OBI A, MYERS D, et al. P- and E-selectin in venous thrombosis and non-venous pathologies[J]. J Thromb Haemost, 2022, 20(5):1056-1066. |
[17] | STRASENBURG W, JÓWICKI J, DURLEWICZ J, et al. Tumor cell-induced platelet aggregation as an emerging therapeutic target for cancer therapy[J]. Front Oncol, 2022,12:909767. |
[18] | DE CANDIA E. Mechanisms of platelet activation by thrombin:a short history[J]. Thromb Res, 2012, 129(3):250-256. |
[19] | MENTER D G, TUCKER S C, KOPETZ S, et al. Platelets and cancer:a casual or causal relationship:revisited[J]. Cancer Metastasis Rev, 2014, 33(1):231-269. |
[20] | ASHTON A W, ZHANG Y, CAZZOLLI R, et al. The role and regulation of thromboxane A2 signaling in cancer-trojan horses and misdirection[J]. Molecules, 2022, 27(19):6234. |
[21] | QUINTANILLA M, MONTERO-MONTERO L, RENART J, et al. Podoplanin in inflammation and cancer[J]. Int J Mol Sci, 2019, 20(3):707. |
[22] | RADA B. Neutrophil extracellular traps[J]. Methods Mol Biol, 2019,1982:517-528. |
[23] |
DARBOUSSET R, THOMAS G M, MEZOUAR S, et al. Tissue factor-positive neutrophils bind to injured endothelial wall and initiate thrombus formation[J]. Blood, 2012, 120(10):2133-2143.
DOI PMID |
[24] | YAO M, MA J, WU D, et al. Neutrophil extracellular traps mediate deep vein thrombosis:from mechanism to therapy[J]. Front Immunol, 2023,14:1198952. |
[25] | SEMERARO F, AMMOLLO C T, MORRISSEY J H, et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms:involvement of platelet TLR2 and TLR4[J]. Blood, 2011, 118(7):1952-1961. |
[26] |
ELASKALANI O, ABDOL RAZAK N B, METHAROM P. Neutrophil extracellular traps induce aggregation of washed human platelets independently of extracellular DNA and histones[J]. Cell Commun Signal, 2018, 16(1):24.
DOI PMID |
[27] |
MASSBERG S, GRAHL L, VON BRUEHL M L, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases[J]. Nat Med, 2010, 16(8):887-896.
DOI PMID |
[28] | VON BRÜHL M L, STARK K, STEINHART A, et al. and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo[J]. J Exp Med, 2012, 209(4):819-835. |
[29] |
WANG Y, LUO L, BRAUN O Ö, et al. Neutrophil extracellular trap-microparticle complexes enhance thrombin generation via the intrinsic pathway of coagulation in mice[J]. Sci Rep, 2018, 8(1):4020.
DOI PMID |
[30] | ADROVER J M, MCDOWELL S A C, HE X Y, et al. NETworking with cancer:the bidirectional interplay between cancer and neutrophil extracellular traps[J]. Cancer Cell, 2023, 41(3):505-526. |
[31] | MASUCCI M T, MINOPOLI M, DEL VECCHIO S, et al. The emerging role of neutrophil extracellular traps(NETs)in tumor progression and metastasis[J]. Front Immunol, 2020,11:1749. |
[32] | LEAL A C, MIZURINI D M, GOMES T, et al. Tumor-derived exosomes induce the formation of neutrophil extracellular traps:implications for the establishment of cancer-associated thrombosis[J]. Sci Rep, 2017, 7(1):6438. |
[33] |
MCDONALD B, DAVIS R P, KIM S J, et al. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice[J]. Blood, 2017, 129(10):1357-1367.
DOI PMID |
[34] |
SZOTOWSKI B, ANTONIAK S, POLLER W, et al. Procoagulant soluble tissue factor is released from endothelial cells in response to inflammatory cytokines[J]. Circ Res, 2005, 96(12):1233-1239.
PMID |
[35] | PUHLMANN M, WEINREICH D M, FARMA J M, et al. Interleukin-1beta induced vascular permeability is dependent on induction of endothelial tissue factor(TF)activity[J]. J Transl Med, 2005,3:37. |
[36] |
GIESELER F, PLATTFAUT C, QUECKE T, et al. Heterogeneity of microvesicles from cancer cell lines under inflammatory stimulation with TNF-α[J]. Cell Biol Int, 2018, 42(11):1533-1544.
DOI PMID |
[37] | VAN HINSBERGH V W, KOOISTRA T, VAN DEN BERG E A, et al. Tumor necrosis factor increases the production of plasminogen activator inhibitor in human endothelial cells in vitro and in rats in vivo[J]. Blood, 1988, 72(5):1467-1473. |
[38] | VAN HINSBERGH V W, BAUER K A, KOOISTRA T, et al. Progress of fibrinolysis during tumor necrosis factor infusions in humans. Concomitant increase in tissue-type plasminogen activator,plasminogen activator inhibitor type-1,and fibrin(ogen)degradation products[J]. Blood, 1990, 76(11):2284-2289. |
[39] |
BROWN G T, NARAYANAN P, LI W, et al. Lipopolysaccharide stimulates platelets through an IL-1β autocrine loop[J]. J Immunol, 2013, 191(10):5196-5203.
DOI PMID |
[40] | ALFARO C, TEIJEIRA A, OÑATE C, et al. Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps(NETs)[J]. Clin Cancer Res, 2016, 22(15):3924-3936. |
[41] |
MECHTCHERIAKOVA D, WLACHOS A, HOLZMÜLLER H, et al. Vascular endothelial cell growth factor-induced tissue factor expression in endothelial cells is mediated by EGR-1[J]. Blood, 1999, 93(11):3811-3823.
PMID |
[42] | ABE K, SHOJI M, CHEN J, et al. Regulation of vascular endothelial growth factor production and angiogenesis by the cytoplasmic tail of tissue factor[J]. Proc Natl Acad Sci U S A, 1999, 96(15):8663-8668. |
[43] |
GRIGNANI G, MAIOLO A. Cytokines and hemostasis[J]. Haematologica, 2000, 85(9):967-972.
PMID |
[44] | YAMAMURA M, YAMADA Y, MOMITA S, et al. Circulating interleukin-6 levels are elevated in adult T-cell leukaemia/lymphoma patients and correlate with adverse clinical features and survival[J]. Br J Haematol, 1998, 100(1):129-134. |
[45] | ZUCCHELLA M, PACCHIARINI L, MELONI F, et al. Effect of interferon alpha,interferon gamma and tumor necrosis factor on the procoagulant activity of human cancer cells[J]. Haematologica, 1993, 78(5):282-286. |
[46] | THÉRY C, WITWER K W, AIKAWA E, et al. Minimal information for studies of extracellular vesicles 2018(MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1):1535750. |
[47] |
MALHOTRA O P, NESHEIM M E, MANN K G. The kinetics of activation of normal and gamma-carboxyglutamic acid-deficient prothrombins[J]. J Biol Chem, 1985, 260(1):279-287.
PMID |
[48] | GEBERT L F R, MACRAE I J. Regulation of microRNA function in animals[J]. Nat Rev Mol Cell Biol, 2019, 20(1):21-37. |
[49] | O'BRIEN J, HAYDER H, ZAYED Y, et al. Overview of microRNA biogenesis,mechanisms of actions,and circulation[J]. Front Endocrinol(Lausanne), 2018,9:402. |
[50] | SALIMINEJAD K, KHORRAM KHORSHID H R, SOLEYMANI FARD S, et al. An overview of microRNAs:biology,functions,therapeutics,and analysis methods[J]. J Cell Physiol, 2019, 234(5):5451-5465. |
[51] | OTO J, NAVARRO S, LARSEN A C, et al. MicroRNAs and neutrophil activation markers predict venous thrombosis in pancreatic ductal adenocarcinoma and distal extrahepatic cholangiocarcinoma[J]. Int J Mol Sci, 2020, 21(3):840. |
[1] | 周嘉宽, 郭平, 蔡祺, 杨铭康, 黄之玺, 薛伊伦, 华任翔, 林瀚, 李佳明, 王剑飚. 外周血口形红细胞增多伴巨大血小板患者分子流行病学分析[J]. 检验医学, 2025, 40(2): 171-177. |
[2] | 代尧, 黎佳慧, 徐秀红. 基于肺炎支原体DNA和外周血炎症指标构建儿童肺炎支原体肺炎预后评估模型[J]. 检验医学, 2024, 39(6): 568-572. |
[3] | 熊天慧, 柴可宁, 夏薇, 曲林琳. 利伐沙班所致PLT计数和功能变化研究进展[J]. 检验医学, 2024, 39(5): 504-509. |
[4] | 陆文苑, 徐静雅, 丁宁. MPV、DD诊断急性脑梗死患者不同梗死部位病变的价值[J]. 检验医学, 2024, 39(2): 171-175. |
[5] | 朱龙银, 潘乾广, 杨莎, 曾玉琴, 伏春晓, 蒲友敏, 方佳, 鄢春艳, 赵洪雯. 全血细胞衍生炎症标志物对移植肾功能延迟恢复的预警价值[J]. 检验医学, 2024, 39(10): 939-944. |
[6] | 周韵斓, 沈立松. 液体活检标志物在非小细胞肺癌中的临床应用和挑战[J]. 检验医学, 2023, 38(9): 807-811. |
[7] | 徐刚强, 晏利红. 冷凝集致单纯假性血小板减少1例报道并文献复习[J]. 检验医学, 2023, 38(9): 905-908. |
[8] | 段丽丽, 蒋唱, 周冬梅. PLR在抗核抗体阳性强直性脊柱炎患者中的临床价值[J]. 检验医学, 2023, 38(7): 669-674. |
[9] | 郭洁, 李海霞, 李小云. 术前外周血红细胞分布宽度/血小板计数比值与子宫内膜癌患者预后的相关性[J]. 检验医学, 2023, 38(7): 675-679. |
[10] | 刘灿, 罗伶俐, 付敏. ASO阳性HSPN患儿NLR、PLR、MPR和免疫球蛋白检测的临床价值[J]. 检验医学, 2023, 38(6): 590-593. |
[11] | 顾玉, 梁晓艳, 马胜辉, 佟娜, 程明艳, 阎泽君. 血浆生物标志物在慢性肾脏病伴血栓栓塞患者中的表达及其近期预后评估价值[J]. 检验医学, 2023, 38(12): 1177-1182. |
[12] | 邓晨霞, 梅燕萍, 张霞, 黄宝山, 添丹, 曹梦婷, 胡永奇, 林勇平, 田礼军. 光学法血小板计数对采血后可逆性血小板聚集的解聚效果[J]. 检验医学, 2023, 38(11): 1087-1090. |
[13] | 张辉, 费阳, 张驰, 陈俊昆, 李果. 武汉地区0~3 d新生儿网织血小板参数参考区间[J]. 检验医学, 2023, 38(1): 69-72. |
[14] | 马大文, 王宏俊, 胡莎莎. NLR、PLR联合MPV预测老年慢性阻塞性肺疾病患者急性加重期近期预后不良的价值[J]. 检验医学, 2022, 37(9): 850-854. |
[15] | 陶朝欣, 孙洁, 张玉娜, 白明明, 张校辉, 许丽亚, 邢江涛, 郝冀洪, 张牡霞. 血小板膜糖蛋白Ⅸ轻度缺乏巨大血小板综合征1例报道[J]. 检验医学, 2022, 37(7): 702-704. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||