检验医学 ›› 2023, Vol. 38 ›› Issue (2): 190-195.DOI: 10.3969/j.issn.1673-8640.2023.02.018
吴炯1, 胡嘉华1, 施美芳2, 刘涛2, 戴洁2, 卢忻怡3, 邹政2()
收稿日期:
2022-01-14
修回日期:
2022-07-08
出版日期:
2023-02-28
发布日期:
2023-04-17
通讯作者:
邹政,E-mail:作者简介:
吴炯,男,1977年生,硕士,副主任技师,主要从事肿瘤相关标志物研究。
基金资助:
WU Jiong1, HU Jiahua1, SHI Meifang2, LIU Tao2, DAI Jie2, LU Xinyi3, ZOU Zheng2()
Received:
2022-01-14
Revised:
2022-07-08
Online:
2023-02-28
Published:
2023-04-17
摘要:
前列腺癌是男性常见的恶性肿瘤之一,具有较高的发病率和致死率。前列腺特异性抗原(PSA)在前列腺癌筛查中意义重大。随着前列腺癌诊疗研究的深入,各类生物标志物不断被发现,在前列腺癌诊疗全过程发挥着重要作用。使用血液或尿液样本的前列腺健康指数(PHI)、4K评分、PCA3、精选MDx、外泌体智能积分等指标可以有效辅助前列腺的筛查和诊断。血液循环肿瘤细胞(CTC)、循环肿瘤DNA(ctDNA)可用于前列腺癌的风险分层和治疗药物选择、治疗反应监测,以及临床试验替代终点。使用前列腺癌组织样本的基因组前列腺积分、Prolaris积分等可用于前列腺癌的风险分层。文章就基于血液、尿液和其他类型样本的各类前列腺癌生物标志物的临床应用进行综述。
中图分类号:
吴炯, 胡嘉华, 施美芳, 刘涛, 戴洁, 卢忻怡, 邹政. 前列腺癌生物标志物研究进展[J]. 检验医学, 2023, 38(2): 190-195.
WU Jiong, HU Jiahua, SHI Meifang, LIU Tao, DAI Jie, LU Xinyi, ZOU Zheng. Research progress of biomarkers of prostate cancer[J]. Laboratory Medicine, 2023, 38(2): 190-195.
项目 | 样本类型 | 指标 |
---|---|---|
筛查和诊断 | ||
PSA | 血液 | PSA |
PHI | 血液 | PHI=p2PSA /游离PSA×(总PSA)1/2 |
4K评分 | 血液 | 基于总PSA、游离PSA、iPSA、hK2和患者临床参数计算 |
PCA3 | 尿液 | 尿液外泌体中PCA3表达 |
精选 MDx | 尿液 | 尿液HOXC6 mRNA和DLX1 mRNA水平 |
外泌体智能积分 | 尿液 | 尿液外泌体mRNA |
Prostarix积分 | 尿液 | 尿液肌氨酸、丙氨酸、甘氨酸和谷氨酸水平 |
TMPRSS2-ERG | 尿液 | TMPRSS2-ERG融合产物 |
风险分层 | ||
AR-V7 | 血液 | CTC中的AR-V7 |
基因组前列腺积分 | 前列腺活检组织 | 17个基因组合 |
Prolaris积分 | 前列腺活检组织 | 46个基因的RNA表达 |
Decipher积分 | 前列腺活检组织 | 17个基因组成的积分系统 |
ProMark积分 | 前列腺活检组织 | 8个蛋白类标志物(GUL2、DERL1、FUS、HSPA9、PDSS2、pS6、SMAD4、YBX1) |
治疗药物相关 | ||
CTC | 血液 | 根据CTC的不同物理或生物特征进行分离 |
ctDNA | 血液 | 全外显子或全基因组测序分析特定突变 |
ctDNA | 血液 | TP53突变、DDR基因等靶向基因测序 |
ctDNA | 血液 | 采用ddPCR检测AR突变和拷贝数 |
表1 各类前列腺癌生物标志物的临床应用
项目 | 样本类型 | 指标 |
---|---|---|
筛查和诊断 | ||
PSA | 血液 | PSA |
PHI | 血液 | PHI=p2PSA /游离PSA×(总PSA)1/2 |
4K评分 | 血液 | 基于总PSA、游离PSA、iPSA、hK2和患者临床参数计算 |
PCA3 | 尿液 | 尿液外泌体中PCA3表达 |
精选 MDx | 尿液 | 尿液HOXC6 mRNA和DLX1 mRNA水平 |
外泌体智能积分 | 尿液 | 尿液外泌体mRNA |
Prostarix积分 | 尿液 | 尿液肌氨酸、丙氨酸、甘氨酸和谷氨酸水平 |
TMPRSS2-ERG | 尿液 | TMPRSS2-ERG融合产物 |
风险分层 | ||
AR-V7 | 血液 | CTC中的AR-V7 |
基因组前列腺积分 | 前列腺活检组织 | 17个基因组合 |
Prolaris积分 | 前列腺活检组织 | 46个基因的RNA表达 |
Decipher积分 | 前列腺活检组织 | 17个基因组成的积分系统 |
ProMark积分 | 前列腺活检组织 | 8个蛋白类标志物(GUL2、DERL1、FUS、HSPA9、PDSS2、pS6、SMAD4、YBX1) |
治疗药物相关 | ||
CTC | 血液 | 根据CTC的不同物理或生物特征进行分离 |
ctDNA | 血液 | 全外显子或全基因组测序分析特定突变 |
ctDNA | 血液 | TP53突变、DDR基因等靶向基因测序 |
ctDNA | 血液 | 采用ddPCR检测AR突变和拷贝数 |
[1] | World cancer report:cancer research for cancer prevention[EB/OL]. [2020-06-20](2020-07-01). https://publications.iarc.fr/586. |
[2] |
XI Y, XU P. Global colorectal cancer burden in 2020 and projections to 2040[J]. Transl Oncol, 2021, 14(10):101174.
DOI URL |
[3] |
SCHRÖDER F H, HUGOSSON J, ROOBOL M J, et al. Screening and prostate-cancer mortality in a randomized European study[J]. N Engl J Med, 2009, 360(13):1320-1328.
DOI URL |
[4] | 前列腺癌筛查中国专家共识(2021年版)[J]. 中国癌症杂志, 2021, 31(5):435-440. |
[5] |
GANDAGLIA G, ALBERS P, ABRAHAMSSON P A, et al. Structured population-based prostate-specific antigen screening for prostate cancer:the European Association of Urology Position in 2019[J]. Eur Urol, 2019, 76(2):142-150.
DOI URL |
[6] |
LOEB S, SANDA M G, BROYLES D L, et al. The prostate health index selectively identifies clinically significant prostate cancer[J]. J Urol, 2015, 193(4):1163-1169.
DOI PMID |
[7] |
LOEB S. Prostate health index(PHI):golden bullet or just another prostate cancer marker?[J]. Eur Urol, 2013, 63(6):995-997.
DOI URL |
[8] | BRYANT R J, SJOBERG D D, VICKERS A J, et al. Predicting high-grade cancer at ten-core prostate biopsy using four kallikrein markers measured in blood in the ProtecT study[J]. J Natl Cancer Inst, 2015, 107(7):djv095. |
[9] |
PUNNEN S, NAHAR B, SOODANA-PRAKASH N, et al. Optimizing patient's selection for prostate biopsy:a single institution experience with multi-parametric MRI and the 4Kscore test for the detection of aggressive prostate cancer[J]. PLoS One, 2018, 13(8):e0201384.
DOI URL |
[10] |
SCHER H I, HELLER G, MOLINA A, et al. Circulating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancer[J]. J Clin Oncol, 2015, 33(12):1348-1355.
DOI PMID |
[11] |
LORENTE D, OLMOS D, MATEO J, et al. Decline in circulating tumor cell count and treatment outcome in advanced prostate cancer[J]. Eur Urol, 2016, 70(6):985-992.
DOI PMID |
[12] |
LORENTE D, OLMOS D, MATEO J, et al. Circulating tumour cell increase as a biomarker of disease progression in metastatic castration-resistant prostate cancer patients with low baseline CTC counts[J]. Ann Oncol, 2018, 29(7):1554-1560.
DOI PMID |
[13] |
ANTONARAKIS E S, LU C, LUBER B, et al. Clinical significance of androgen receptor splice variant-7 mRNA detection in circulating tumor cells of men with metastatic castration-resistant prostate cancer treated with first- and second-line abiraterone and enzalutamide[J]. J Clin Oncol, 2017, 35(19):2149-2156.
DOI PMID |
[14] |
ARMSTRONG A J, HALABI S, LUO J, et al. Prospective multicenter validation of androgen receptor splice variant 7 and hormone therapy resistance in high-risk castration-resistant prostate cancer:the PROPHECY study[J]. J Clin Oncol, 2019, 37(13):1120-1129.
DOI URL |
[15] |
AUTIO K A, DREICER R, ANDERSON J, et al. Safety and efficacy of BIND-014,a docetaxel nanoparticle targeting prostate-specific membrane antigen for patients with metastatic castration-resistant prostate cancer:a phase 2 clinical trial[J]. JAMA Oncol, 2018, 4(10):1344-1351.
DOI URL |
[16] |
ANNALA M, VANDEKERKHOVE G, KHALAF D, et al. Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer[J]. Cancer Discov, 2018, 8(4):444-457.
DOI PMID |
[17] |
GOODALL J, MATEO J, YUAN W, et al. Circulating cell-free DNA to guide prostate cancer treatment with PARP inhibition[J]. Cancer Discov, 2017, 7(9):1006-1017.
DOI PMID |
[18] | WYATT A W, ANNALA M, AGGARWAL R, et al. Concordance of circulating tumor DNA and matched metastatic tissue biopsy in prostate cancer[J]. J Natl Cancer Inst, 2017, 109(12):djx118. |
[19] |
DE LAERE B, OEYEN S, MAYRHOFER M, et al. TP53 outperforms other androgen receptor biomarkers to predict abiraterone or enzalutamide outcome in metastatic castration-resistant prostate cancer[J]. Clin Cancer Res, 2019, 25(6):1766-1773.
DOI PMID |
[20] |
CONTEDUCA V, WETTERSKOG D, SHARABIANI M TA, et al. Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer:a multi-institution correlative biomarker study[J]. Ann Oncol, 2017, 28(7):1508-1516.
DOI URL |
[21] | JAYARAM A, WINGATE A, WETTERSKOG D, et al. Plasma androgen receptor copy number status at emergence of metastatic castration-resistant prostate cancer:a pooled multicohort analysis[J]. JCO Precis Oncol, 2019, 3:PO.19.00123. |
[22] |
SHEN S Y, SINGHANIA R, FEHRINGER G, et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes[J]. Nature, 2018, 563(7732):579-583.
DOI |
[23] |
WU A, CREMASCHI P, WETTERSKOG D, et al. Genome-wide plasma DNA methylation features of metastatic prostate cancer[J]. J Clin Invest, 2020, 130(4):1991-2000.
DOI PMID |
[24] |
ZHANG H, FREITAS D, KIM H S, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation[J]. Nat Cell Biol, 2018, 20(3):332-343.
DOI PMID |
[25] |
VAGNER T, SPINELLI C, MINCIACCHI V R, et al. Large extracellular vesicles carry most of the tumour DNA circulating in prostate cancer patient plasma[J]. J Extracell Vesicles, 2018, 7(1):1505403.
DOI URL |
[26] |
THÉRY C, WITWER K W, AIKAWA E, et al. Minimal information for studies of extracellular vesicles 2018(MISEV2018):a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1):1535750.
DOI URL |
[27] |
COLOMBO M, RAPOSO G, THÉRY C. Biogenesis,secretion,and intercellular interactions of exosomes and other extracellular vesicles[J]. Annu Rev Cell Dev Biol, 2014, 30:255-289.
DOI URL |
[28] |
PELLEGRINI K L, PATIL D, DOUGLAS K J S, et al. Detection of prostate cancer-specific transcripts in extracellular vesicles isolated from post-DRE urine[J]. Prostate, 2017, 77(9):990-999.
DOI PMID |
[29] |
HESSELS D, KLEIN GUNNEWIEK J M, VAN OORT I, et al. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer[J]. Eur Urol, 2003, 44(1):8-16.
DOI PMID |
[30] | DE KOK J B, VERHAEGH G W, ROELOFS R W, et al. DD3(PCA3),a very sensitive and specific marker to detect prostate tumors[J]. Cancer Res, 2002, 62(9):2695-2698. |
[31] |
LENDÍNEZ-CANO G, ALONSO-FLORES J, BELTRÁN-AGUILAR V, et al. Comparison of pathological data between prostate biopsy and radical prostatectomy specimen in patients with low to very low risk prostate cancer[J]. Actas Urol Esp, 2015, 39(8):482-487.
DOI URL |
[32] |
VAN NESTE L, BIGLEY J, TOLL A, et al. A tissue biopsy-based epigenetic multiplex PCR assay for prostate cancer detection[J]. BMC Urol, 2012, 12:16.
DOI PMID |
[33] |
VAN NESTE L, HENDRIKS R J, DIJKSTRA S, et al. Detection of high-grade prostate cancer using a urinary molecular biomarker-based risk score[J]. Eur Urol, 2016, 70(5):740-748.
DOI PMID |
[34] |
MCKIERNAN J, DONOVAN M J, MARGOLIS E, et al. A prospective adaptive utility trial to validate performance of a novel urine exosome gene expression assay to predict high-grade prostate cancer in patients with prostate-specific antigen 2-10ng/ml at initial biopsy[J]. Eur Urol, 2018, 74(6):731-738.
DOI PMID |
[35] |
SREEKUMAR A, POISSON L M, RAJENDIRAN T M, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression[J]. Nature, 2009, 457(7231):910-914.
DOI |
[36] |
KHAN A P, RAJENDIRAN T M, ATEEQ B, et al. The role of sarcosine metabolism in prostate cancer progression[J]. Neoplasia, 2013, 15(5):491-501.
DOI PMID |
[37] |
SROKA W D, BOUGHTON B A, REDDY P, et al. Determination of amino acids in urine of patients with prostate cancer and benign prostate growth[J]. Eur J Cancer Prev, 2017, 26(2):131-134.
DOI PMID |
[38] |
TOMLINS S A, RHODES D R, PERNER S, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer[J]. Science, 2005, 310(5748):644-648.
DOI PMID |
[39] |
HESSELS D, SMIT F P, VERHAEGH G W, et al. Detection of TMPRSS2-ERG fusion transcripts and prostate cancer antigen 3 in urinary sediments may improve diagnosis of prostate cancer[J]. Clin Cancer Res, 2007, 13(17):5103-5108.
DOI PMID |
[40] |
KLEIN E A, COOPERBERG M R, MAGI-GALLUZZI C, et al. A 17-gene assay to predict prostate cancer aggressiveness in the context of Gleason grade heterogeneity,tumor multifocality,and biopsy undersampling[J]. Eur Urol, 2014, 66(3):550-560.
DOI URL |
[41] |
CUZICK J, BERNEY D M, FISHER G, et al. Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort[J]. Br J Cancer, 2012, 106(6):1095-1099.
DOI |
[42] |
KNUDSEN B S, KIM H L, ERHO N, et al. Application of a clinical whole-transcriptome assay for staging and prognosis of prostate cancer diagnosed in needle core biopsy specimens[J]. J Mol Diagn, 2016, 18(3):395-406.
DOI PMID |
[43] |
SHIPITSIN M, SMALL C, CHOUDHURY S, et al. Identification of proteomic biomarkers predicting prostate cancer aggressiveness and lethality despite biopsy-sampling error[J]. Br J Cancer, 2014, 111(6):1201-1212.
DOI |
[1] | 周韵斓, 沈立松. 液体活检标志物在非小细胞肺癌中的临床应用和挑战[J]. 检验医学, 2023, 38(9): 807-811. |
[2] | 孙传玉, 赵晓君, 葛圣阳, 张扬. 前列腺癌进展相关转录因子研究[J]. 检验医学, 2023, 38(9): 818-824. |
[3] | 彭伟, 李运改, 许静, 刘华, 杨翠霞, 沈云岳. 血清炎症因子联合PSA、f-PSA可辅助诊断前列腺癌[J]. 检验医学, 2023, 38(9): 849-854. |
[4] | 陈文举, 周勇, 徐佳佳, 王攀. 血清外泌体miR-23b-3p和miR-4429诊断HCC的价值[J]. 检验医学, 2023, 38(7): 624-628. |
[5] | 张敏, 王彬宇, 迟伟群, 刘禹. 外泌体非编码RNA作为疾病诊断生物标志物的研究进展[J]. 检验医学, 2023, 38(6): 594-598. |
[6] | 高锋. 新型肿瘤标志物的临床应用——前景与挑战[J]. 检验医学, 2023, 38(4): 303-306. |
[7] | 陈馨宁, 黄斐, 姜惠琴, 沈敏娜, 潘柏申, 王蓓丽, 郭玮. 非小细胞肺癌患者血浆EGFR基因c.2572_2573delinsAG位点突变1例报道[J]. 检验医学, 2023, 38(10): 1003-1005. |
[8] | 王芮, 李朝燕, 赵爱光. 循环肿瘤DNA检测在胃癌诊疗中的应用现状[J]. 检验医学, 2022, 37(9): 877-881. |
[9] | 段玉萍, 谢骊, 蔡雷鸣, 吴晶晶, 洪茂, 厉倩. 血清外泌体、胎盘来源外泌体和外泌体miR-210与子痫前期的相关性[J]. 检验医学, 2022, 37(8): 715-719. |
[10] | 柳行强, 宁立芬, 李琳, 陈忠成. FR+-CTC、ANXA2、ProGRP与肺癌临床病理特征的相关性[J]. 检验医学, 2022, 37(8): 735-740. |
[11] | 俞琦, 孙懿, 王琼丽, 蔡逸婷, 李莉. 外周血循环肿瘤细胞形态学分析技术在临床检验中的应用[J]. 检验医学, 2022, 37(3): 264-269. |
[12] | 王琳琳, 许丽丽, 范君, 钱余. 氧化应激标志物与前列腺增生和前列腺癌的相关性[J]. 检验医学, 2022, 37(12): 1135-1140. |
[13] | 孟俊, 王俊青, 费晓春, 顾志冬. 血浆外泌体circRNA诊断HCC联合检测模型的建立与验证[J]. 检验医学, 2022, 37(1): 1-10. |
[14] | 沈素雅, 黄建钊, 李小怀. 循环肿瘤细胞富集技术研究进展[J]. 检验医学, 2022, 37(1): 91-96. |
[15] | 杨朝美, 冯杰, 郎磊, 颜光涛. CTC、CEA、CA125联合检测在结直肠癌中的临床价值[J]. 检验医学, 2021, 36(9): 901-905. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||