[1] |
WANG X, ZHAO B S, ROUNDTREE I A, et al. N(6)-methyladenosine modulates messenger RNA translation efficiency[J]. Cell, 2015, 161(6):1388-1399.
DOI
PMID
|
[2] |
ZHAO B S, ROUNDTREE I A, HE C. Post-transcriptional gene regulation by mRNA modifications[J]. Nat Rev Mol Cell Biol, 2017, 18(1):31-42.
|
[3] |
YUE Y, LIU J, HE C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation[J]. Genes Dev, 2015, 29(13):1343-1355.
|
[4] |
WANG X, LU Z, GOMEZ A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2014, 505(7481):117-120.
|
[5] |
ROUNDTREE I A, EVANS M E, PAN T, et al. Dynamic RNA modifications in gene expression regulation[J]. Cell, 2017, 169(7):1187-1200.
DOI
PMID
|
[6] |
XU Y, YUAN X D, WU J J, et al. The N6-methyladenosine mRNA methylase METTL14 promotes renal is chemic reperfusion injury via suppressing YAP1[J]. J Cell Biochem, 2020, 121(1):524-533.
|
[7] |
WENG H, HUANG H, WU H, et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification[J]. Cell Stem Cell, 2018, 22(2):191-205.
|
[8] |
LANG F, SINGH R K, PEI Y, et al. EBV epitranscriptome reprogramming by METTL14 is critical for viral-associated tumorigenesis[J]. PLoS Pathog, 2019, 15(6):e1007796.
|
[9] |
MA J Z, YANG F, ZHOU C C, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary MicroRNA processing[J]. Hepatology, 2017, 65(2):529-543.
|
[10] |
ZENCIRCI A E, ZENCIRCI E, DEGIRMENCIOGLU A, et al. The relationship between Gensini score and ST-segment resolution in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention[J]. Kardiol Pol, 2014, 72(6):494-503.
DOI
PMID
|
[11] |
ZHAO L, WANG L, ZHANG D, et al. Puerarin alleviates coronary heart disease via suppressing inflammation in a rat model[J]. Gene, 2021, 771:145354.
|
[12] |
PEIKERT A, KAIER K, MERZ J, et al. Residual inflammatory risk in coronary heart disease:incidence of elevated high-sensitive CRP in a real-world cohort[J]. Clin Res Cardiol, 2020, 109(3):315-323.
|
[13] |
ROTHENBACHER D, HOFFMEISTER A, BRENNER H, et al. Physical activity,coronary heart disease,and inflammatory response[J]. Arch Intern Med, 2003, 163(10):1200-1205.
|
[14] |
ASLIBEKYAN S, AGHA G, COLICINO E, et al. Association of methylation signals with incident coronary heart disease in an epigenome-wide assessment of circulating tumor necrosis factor alpha[J]. JAMA Cardiol, 2018, 3(6):463-472.
|
[15] |
QUILES-JIMENEZ A, GREGERSEN I, MITTELSTEDT LEAL DE SOUSA M, et al. N6-methyladenosine in RNA of atherosclerotic plaques:an epitranscriptomic signature of human carotid atherosclerosis[J]. Biochem Biophys Res Commun, 2020, 533(4):631-637.
|
[16] |
ZHANG B Y, HAN L, TANG Y F, et al. METTL14 regulates M6A methylation-modified primary miR-19a to promote cardiovascular endothelial cell proliferation and invasion[J]. Eur Rev Med Pharmacol Sci, 2020, 24(12):7015-7023.
|
[17] |
JIAN D, WANG Y, JIAN L, et al. METTL14 aggravates endothelial inflammation and atherosclerosis by increasing FOXO1 N6-methyladeosine modifications[J]. Theranostics, 2020, 10(20):8939-8956.
DOI
PMID
|