[1] |
RUSSO T A, MARR C M. Hypervirulent Klebsiella pneumoniae[J]. Clin Microbiol Rev, 2019, 32(3):e00001-e00019.
|
[2] |
MA Y X, WANG C Y, LI Y Y, et al. Considerations and caveats in combating ESKAPE pathogens against nosocomial infections[J]. Adv Sci(Weinh), 2019, 7(1):1901872.
|
[3] |
TURTON J, DAVIES F, TURTON J, et al. Hybrid resistance and virulence plasmids in"high-risk"clones of Klebsiella pneumoniae,including those carrying blaNDM-5[J]. Microorganisms, 2019, 7(9):326.
|
[4] |
HOLT K E, WERTHEIM H, ZADOKS R N, et al. Genomic analysis of diversity,population structure,virulence and antimicrobial resistance in Klebsiella pneumoniae:an urgent threat to public health[J]. Proc Natl Acad Sci U S A, 2015, 112(27):E3574-E3581.
|
[5] |
RUSSO T A, OLSON R, FANG C T, et al. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae[J]. J Clin Microbiol, 2018, 56(9):e00776.
|
[6] |
刘姝灵. 肺炎克雷伯菌胞外多糖广谱抗生物膜活性研究[D]. 衡阳: 南华大学, 2021.
|
[7] |
SANTAJIT S, SOOKRUNG N, INDRAWATTANA N. Quorum sensing in ESKAPE bugs:a target for combating antimicrobial resistance and bacterial virulence[J]. Biology(Basel), 2022, 11(10):1466.
|
[8] |
张永州, 吕维玲, 寇洁健, 等. 2020—2021年医院感染病原菌分布及耐药性分析[J]. 中国病原生物学杂志, 2022, 17(10):1192-1198.
|
[9] |
胡付品, 郭燕, 朱德妹, 等. 2021年CHINET中国细菌耐药监测[J]. 中国感染与化疗杂志, 2022, 22(5):521-530.
DOI
|
[10] |
European Centre for Disease Prevention and Control. Antimicrobial resistance in the EU/EEA(EARS-Net)-annual epidemiological report for 2021[EB/OL].(2022-11-17)[2023-01-01]. https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2021.
|
[11] |
World Health Organization. Global antimicrobial resistance and use surveillance system(GLASS)report:2022[EB/OL].(2022-12-09)[2023-01-03]. https://www.who.int/publications/i/item/9789240062702.
|
[12] |
FATIMA S, LIAQAT F, AKBAR A, et al. Virulent and multidrug-resistant Klebsiella pneumoniae from clinical samples in Balochistan[J]. Int Wound J, 2021, 18(4):510-518.
|
[13] |
TANEJA J, MISHRA B, THAKUR A, et al. Nosocomial blood-stream infections from extended-spectrum-beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae from GB pant hospital,New Delhi[J]. J Infect Dev Ctries, 2010, 4(8):517-520.
|
[14] |
李耘, 郑波, 吕媛, 等. 中国细菌耐药监测(CARST)研究2019-2020革兰氏阴性菌监测报告[J]. 中国临床药理学杂志, 2022, 38(5):432-452.
|
[15] |
LEE X J, STEWARDSON A J, WORTH L J, et al. Attributable length of stay,mortality risk,and costs of bacterial health care-associated infections in Australia:a retrospective case-cohort study[J]. Clin Infect Dis, 2021, 72(10):e506-e514.
|
[16] |
FU L, HUANG M, ZHANG X, et al. Frequency of virulence factors in high biofilm formation blaKPC-2 producing Klebsiella pneumoniae strains from hospitals[J]. Microb Pathog, 2018,116:168-172.
|
[17] |
MURPHY C N, MORTENSEN M S, KROGFELT K A, et al. Role of Klebsiella pneumoniae type 1 and type 3 fimbriae in colonizing silicone tubes implanted into the bladders of mice as a model of catheter-associated urinary tract infections[J]. Infect Immun, 2013, 81(8):3009-3017.
|
[18] |
SOTO E, DENNIS M M, BEIERSCHMITT A, et al. Biofilm formation of hypermucoviscous and non-hypermucoviscous Klebsiella pneumoniae recovered from clinically affected African green monkey(Chlorocebus aethiops sabaeus)[J]. Microb Pathog, 2017,107:198-201.
|
[19] |
CANDAN E D, AKSÖZ N. Klebsiella pneumoniae:characteristics of carbapenem resistance and virulence factors[J]. Acta Biochim Pol, 2015, 62(4):867-874.
|
[20] |
SHIN J, KO K S. Comparative study of genotype and virulence in CTX-M-producing and non-extended-spectrum-β-lactamase-producing Klebsiella pneumoniae isolates[J]. Antimicrob Agents Chemother, 2014, 58(4):2463-2467.
|
[21] |
HEIDEN S E, HÜBNER N O, BOHNERT J A, et al. A Klebsiella pneumoniae ST307 outbreak clone from Germany demonstrates features of extensive drug resistance,hypermucoviscosity,and enhanced iron acquisition[J]. Genome Med, 2020, 12(1):113.
|
[22] |
RUSSO T A, SHON A S, BEANAN J M, et al. Hypervirulent K. pneumoniae secretes more and more active iron-acquisition molecules than“classical”K. pneumoniae thereby enhancing its virulence[J]. PLoS One, 2011, 6(10):e26734.
|
[23] |
BALLÉN V, GABASA Y, RATIA C, et al. Antibiotic resistance and virulence profiles of Klebsiella pneumoniae strains isolated from different clinical sources[J]. Front Cell Infect Microbiol, 2021,11:738223.
|
[24] |
LAM M M C, WICK R R, WYRES K L, et al. Genetic diversity,mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations[J]. Microb Genom, 2018, 4(9): e000196.
|
[25] |
YAN Q, ZHOU M, ZOU M, et al. Hypervirulent Klebsiella pneumoniae induced ventilator-associated pneumonia in mechanically ventilated patients in China[J]. Eur J Clin Microbiol Infect Dis, 2016, 35(3):387-396.
|
[26] |
JUNG S G, JANG J H, KIM A Y, et al. Removal of pathogenic factors from 2,3-butanediol-producing Klebsiella species by inactivating virulence-related wabG gene[J]. Appl Microbiol Biotechnol, 2013, 97(5):1997-2007.
|