[1] |
LI Y, LI S, WANG J, et al. CRISPR/Cas systems towards next-generation biosensing[J]. Trends Biotechnol, 2019, 37(7):730-743.
DOI
PMID
|
[2] |
LI L, SHEN G, WU M, et al. CRISPR-Cas-mediated diagnostics[J]. Trends Biotechnol, 2022, 40(11):1326-1345.
DOI
PMID
|
[3] |
MAKAROVA K S, WOLF Y I, IRANZO J, et al. Evolutionary classification of CRISPR-Cas systems:a burst of class 2 and derived variants[J]. Nat Rev Microbiol, 2020, 18(2):67-83.
|
[4] |
JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821.
DOI
PMID
|
[5] |
ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3):759-771.
DOI
PMID
|
[6] |
EAST-SELETSKY A,O'CONNELL M R,KNIGHT S C,et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection[J]. Nature, 2016, 538(7624):270-273.
|
[7] |
PARDEE K, GREEN A A, TAKAHASHI M K, et al. Rapid,low-cost detection of zika virus using programmable biomolecular components[J]. Cell, 2016, 165(5):1255-1266.
|
[8] |
HAJIAN R, BALDERSTON S, TRAN T, et al. Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor[J]. Nat Biomed Eng, 2019, 3(6):427-437.
DOI
PMID
|
[9] |
WANG Q, ZHANG B, XU X, et al. CRISPR-typing PCR(ctPCR),a new Cas9-based DNA detection method[J]. Sci Rep, 2018, 8(1):14126.
|
[10] |
ZHANG B, XIA Q, WANG Q, et al. Detecting and typing target DNA with a novel CRISPR-typing PCR(ctPCR)technique[J]. Anal Biochem, 2018,561-562:37-46.
|
[11] |
ZHOU W, HU L, YING L, et al. A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection[J]. Nat Commun, 2018, 9(1):5012.
DOI
PMID
|
[12] |
LI S Y, CHENG Q X, WANG J M, et al. CRISPR-Cas12a-assisted nucleic acid detection[J]. Cell Discov, 2018, 4:20.
|
[13] |
LI L, LI S, WU N, et al. HOLMESv2:a CRISPR-Cas12b-assisted platform for nucleic acid detection and dna methylation quantitation[J]. ACS Synth Biol, 2019, 8(10):2228-2237.
|
[14] |
SUN Y, YU L, LIU C, et al. One-tube SARS-CoV-2 detection platform based on RT-RPA and CRISPR/Cas12a[J]. J Transl Med, 2021, 19(1):74.
DOI
PMID
|
[15] |
MUKAMA O, WU J, LI Z, et al. An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids[J]. Biosens Bioelectron, 2020, 159:112143.
|
[16] |
TENG F, GUO L, CUI T, et al. CDetection:CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity[J]. Genome Biol, 2019, 20(1):132.
|
[17] |
WANG B, WANG R, WANG D, et al. Cas12aVDet:a CRISPR/Cas12a-based platform for rapid and visual nucleic acid detection[J]. Anal Chem, 2019, 91(19):12156-12161.
|
[18] |
LEE S Y, OH S W. Filtration-based LAMP-CRISPR/Cas12a system for the rapid,sensitive and visualized detection of Escherichia coliO157:H7[J]. Talanta, 2022, 241:123186.
|
[19] |
SWARTS D C, JINEK M. Cas9 versus Cas12a/Cpf1:structure-function comparisons and implications for genome editing[J]. Wiley Interdiscip Rev RNA, 2018, 9(5):e1481.
|
[20] |
DAI Y, SOMOZA R A, WANG L, et al. Exploring the trans-cleavage activity of CRISPR-Cas12a(cpf1)for the development of a universal electrochemical biosensor[J]. Angew Chem Int Ed Engl, 2019, 58(48):17399-17405.
|
[21] |
NEWSHAM E, RICHARDS-KORTUM R. CRISPR-based electrochemical sensor permits sensitive and specific viral detection in low-resource settings[J]. ACS Cent Sci, 2021, 7(6):926-928.
|
[22] |
LIU P F, ZHAO K R, LIU Z J, et al. Cas12a-based electrochemiluminescence biosensor for target amplification-free DNA detection[J]. Biosens Bioelectron, 2021, 176:112954.
|
[23] |
TANG Y, QI L, LIU Y, et al. CLIPON:a CRISPR-enabled strategy that turns commercial pregnancy test strips into general point-of-need test devices[J]. Angew Chem Int Ed Engl, 2022, 61(12):e202115907.
|
[24] |
HARRINGTON L B, BURSTEIN D, CHEN J S, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018, 362(6416):839-842.
DOI
PMID
|
[25] |
GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017, 356(6336):438-442.
DOI
PMID
|
[26] |
QING M, CHEN S L, SUN Z, et al. Universal and programmable rolling circle amplification-CRISPR/Cas12a-mediated immobilization-free electrochemical biosensor[J]. Anal Chem, 2021, 93(20):7499-7507.
DOI
PMID
|
[27] |
LIU T Y, KNOTT G J, SMOCK D C J, et al. Publisher correction:accelerated RNA detection using tandem CRISPR nucleases[J]. Nat Chem Biol, 2021, 17(11):1210.
|
[28] |
GOOTENBERG J S, ABUDAYYEH O O, KELLNER M J, et al. Multiplexed and portable nucleic acid detection platform with Cas13,Cas12a,and Csm6[J]. Science, 2018, 360(6387):439-444.
|
[29] |
ACKERMAN C M, MYHRVOLD C, THAKKU S G, et al. Massively multiplexed nucleic acid detection with Cas13[J]. Nature, 2020, 582(7811):277-282.
|
[30] |
ZHOU T, HUANG R, HUANG M, et al. CRISPR/Cas13a powered portable electrochemiluminescence chip for ultrasensitive and specific miRNA detection[J]. Adv Sci(Weinh), 2020, 7(13):1903661.
|
[31] |
FOZOUNI P, SON S, DÍAZ DE LEÓN DERBY M, et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy[J]. Cell, 2021, 184(2):323-333.
DOI
PMID
|
[32] |
ARIZTI-SANZ J, FREIJE C A, STANTON A C, et al. Streamlined inactivation,amplification,and Cas13-based detection of SARS-CoV-2[J]. Nat Commun, 2020, 11(1):5921.
|
[33] |
NGUYEN L T, GURIJALA J, RANANAWARE S R, et al. CRISPR-ENHANCE:an enhanced nucleic acid detection platform using Cas12a[J]. Methods, 2022, 203:116-124.
|
[34] |
王雪亮, 肖艳群, 王华梁. CRISPR/Cas系统在分子检测中的应用[J]. 检验医学, 2020, 35(2):181-185.
DOI
|