检验医学 ›› 2024, Vol. 39 ›› Issue (3): 291-297.DOI: 10.3969/j.issn.1673-8640.2024.03.015
收稿日期:
2022-10-26
修回日期:
2023-05-10
出版日期:
2024-03-30
发布日期:
2024-04-24
通讯作者:
郑业焕,E-mail:zhengyehuan@autobio.com.cn。
作者简介:
慎津进,男,1993年生,硕士,助理工程师,主要从事新型分子诊断检测技术研究。
SHEN Jinjin, XUE Han, LI Jinfu, GAO Lifei, ZHENG Yehuan()
Received:
2022-10-26
Revised:
2023-05-10
Online:
2024-03-30
Published:
2024-04-24
摘要:
细胞色素P450家族2亚科D成员6(CYP2D6)是细胞色素P450酶家族中的重要药物代谢酶,是抗抑郁药物、抗精神病药物和阿片类镇痛药物等主要的代谢酶。CYP2D6基因位点的复杂性和诸多等位基因突变体造成了CYP2D6表型的多态性,目前已报道170余种等位基因突变体。CYP2D6酶活性变化很大,从无活性到超快代谢均存在,根据酶活性可将不同表型携带者分为超快代谢者、正常代谢者、中间代谢者和弱代谢者。随着个体化医疗的发展,CYP2D6基因分型试验可以辅助药物遗传学和基因分型技术的研究和临床应用。然而,由于CYP2D6基因存在复杂的突变,包括单核苷酸突变、插入、缺失、基因拷贝数变异和基因重组。CYP2D6基因不仅存在个体化差异,且在不同种族之间等位基因的频率也明显不同。另外,人体内同时存在与CYP2D6同源性很高的非功能性基因CYP2D7,通过基因检测分析CYP2D6表型是一项非常具有挑战性的工作。文章总结了CYP2D6基因的多态性和基因分型的复杂性,并分析了部分不同的基因型突变对CYP2D6基因分型的影响,以帮助临床通过基因分型方法对CYP2D6酶活性进行预测。
中图分类号:
慎津进, 薛寒, 李进福, 高利飞, 郑业焕. CYP2D6基因分型影响因素研究进展[J]. 检验医学, 2024, 39(3): 291-297.
SHEN Jinjin, XUE Han, LI Jinfu, GAO Lifei, ZHENG Yehuan. Research progress on the factors of CYP2D6 genotyping[J]. Laboratory Medicine, 2024, 39(3): 291-297.
等位基因 | 活性评分/分 | 东亚人群频率/% | 等位基因功能 | 基因突变 |
---|---|---|---|---|
*1 | 1.0 | 25.78 | 正常 | |
*1×2 | 2.0 | 0.34 | 提高 | *1双拷贝基因 |
*2 | 1.0 | 11.92 | 正常 | 2851C>T,4181G>C |
*2×2 | 2.0 | 0.46 | 提高 | *2双拷贝基因 |
*2×≥3 | ≥3.0 | 0.10 | 提高 | *2至少有三拷贝基因 |
*4 | 0.0 | 0.53 | 无 | 1847G>A |
*5 | 0.0 | 4.82 | 无 | CYP2D6整基因缺失 |
*9 | 0.25 | 0.17 | 减弱 | 2616delAAG |
*10 | 0.25 | 42.84 | 减弱 | 100C>T,4181G>C |
*10×2 | 0.5 | 0.59 | 减弱 | *10双拷贝基因 |
*13 | 0.0 | 0.13 | 无 | CYP2D7-CYP2D6 hybrid gene |
*14 | 0.5 | 0.47 | 减弱 | 1759G>A,2851C>T,4181G>C |
*18 | 0.0 | 0.13 | 无 | 4135-4136insTGCCCACTG |
*21 | 0.0 | 0.35 | 无 | 2580-2581insC,2851C>T,4181G>C |
*34 | 1.0 | 0.89 | 正常 | 2851C>T |
*36 | 0.0 | 1.14 | 无 | 100C>T, 4129C>G,4132A>G,4156C>T+4157A>C,4159G>C,4165T>G,4168G>A+4169C>G,4181G>C |
*36×2 | 0.0 | 0.41 | 无 | *36双拷贝基因 |
*39 | 1.0 | 0.56 | 正常 | 4181G>C |
*41 | 0.25 | 2.32 | 减弱 | 2851C>T,2989G>A,4181G>C |
*49 | 0.5 | 0.99 | 减弱 | 100C>T,1612T>A,4181G>C |
*52 | 0.25 | 0.16 | 减弱 | 100C>T,3878G>A,4181G>C |
*60 | 0.0 | 0.14 | 无 | 1888-1889insTA |
*65 | 2.95 | 功能不清 | 100C>T,2851C>T,4181G>C | |
*69 | 0.0 | 1.00 | 无 | 100C>T,2851C>T,2989G>A,4181G>C |
表1 东亚人群CYP 2D 6等位基因突变频率和功能①
等位基因 | 活性评分/分 | 东亚人群频率/% | 等位基因功能 | 基因突变 |
---|---|---|---|---|
*1 | 1.0 | 25.78 | 正常 | |
*1×2 | 2.0 | 0.34 | 提高 | *1双拷贝基因 |
*2 | 1.0 | 11.92 | 正常 | 2851C>T,4181G>C |
*2×2 | 2.0 | 0.46 | 提高 | *2双拷贝基因 |
*2×≥3 | ≥3.0 | 0.10 | 提高 | *2至少有三拷贝基因 |
*4 | 0.0 | 0.53 | 无 | 1847G>A |
*5 | 0.0 | 4.82 | 无 | CYP2D6整基因缺失 |
*9 | 0.25 | 0.17 | 减弱 | 2616delAAG |
*10 | 0.25 | 42.84 | 减弱 | 100C>T,4181G>C |
*10×2 | 0.5 | 0.59 | 减弱 | *10双拷贝基因 |
*13 | 0.0 | 0.13 | 无 | CYP2D7-CYP2D6 hybrid gene |
*14 | 0.5 | 0.47 | 减弱 | 1759G>A,2851C>T,4181G>C |
*18 | 0.0 | 0.13 | 无 | 4135-4136insTGCCCACTG |
*21 | 0.0 | 0.35 | 无 | 2580-2581insC,2851C>T,4181G>C |
*34 | 1.0 | 0.89 | 正常 | 2851C>T |
*36 | 0.0 | 1.14 | 无 | 100C>T, 4129C>G,4132A>G,4156C>T+4157A>C,4159G>C,4165T>G,4168G>A+4169C>G,4181G>C |
*36×2 | 0.0 | 0.41 | 无 | *36双拷贝基因 |
*39 | 1.0 | 0.56 | 正常 | 4181G>C |
*41 | 0.25 | 2.32 | 减弱 | 2851C>T,2989G>A,4181G>C |
*49 | 0.5 | 0.99 | 减弱 | 100C>T,1612T>A,4181G>C |
*52 | 0.25 | 0.16 | 减弱 | 100C>T,3878G>A,4181G>C |
*60 | 0.0 | 0.14 | 无 | 1888-1889insTA |
*65 | 2.95 | 功能不清 | 100C>T,2851C>T,4181G>C | |
*69 | 0.0 | 1.00 | 无 | 100C>T,2851C>T,2989G>A,4181G>C |
[1] | NOFZIGER C, TURNER A J, SANGKUHL K, et al. PharmVar GeneFocus:CYP2D6[J]. Clinical Pharmacology & Therapeutics, 2020, 107(1):154-170. |
[2] | 杨帆, 仝利俊, 马睿婷. CYP2D6基因多态性对个体用药影响的研究进展[J]. 世界最新医学信息文摘(连续型电子期刊), 2018, 18(92):32-34. |
[3] |
ZANGER U M, SCHWAB M. Cytochrome P 450 enzymes in drug metabolism:regulation of gene expression,enzyme activities,and impact of genetic variation[J]. Pharmacol Ther, 2013, 138(1):103-141.
DOI URL |
[4] |
SUNTHANKAR S D, KANNANKERIL P J, GAEDIGK A, et al. Influence of CYP2D6 genetic variation on adverse events with propafenone in the pediatric and young adult population[J]. Clin Transl Sci, 2022, 15(7):1787-1795.
DOI URL |
[5] | TAYLOR C, CROSBY I, YIP V, et al. A review of the important role of CYP2D6 in pharmacogenomics[J]. Genes(Basel), 2020, 11(11):1295. |
[6] |
MAHGOUB A, IDLE J R, DRING L G, et al. Polymorphic hydroxylation of debrisoquine in man[J]. Lancet, 1977, 2(8038):584-586.
PMID |
[7] |
EICHELBAUM M, SPANNBRUCKER N, STEINCKE B, et al. Defective N-oxidation of sparteine in man:a new pharmacogenetic defect[J]. Eur J Clin Pharmacol, 1979, 16(3):183-187.
DOI URL |
[8] | LARSEN J B, JØRGENSEN S J P. Simple and robust detection of CYP2D6 gene deletions and duplications using CYP2D8P as reference[J]. Pharmaceuticals(Basel), 2022, 15(2):166. |
[9] |
DALLE FRATTE C, GAGNO S, RONCATO R, et al. CYP2D6 and CYP2C8 pharmacogenetics and pharmacological interactions to predict imatinib plasmatic exposure in GIST patients[J]. Br J Clin Pharmacol, 2023, 89(3):1089-1098.
DOI URL |
[10] |
GAEDIGK A. Complexities of CYP2D6 gene analysis and interpretation[J]. Int Rev Psychiatry, 2013, 25(5):534-553.
DOI URL |
[11] |
ABDULJALIL K, FRANK D, GAEDIGK A, et al. Assessment of activity levels for CYP2D6*1,CYP2D6*2,and CYP2D6*41 genes by population pharmacokinetics of dextromethorphan[J]. Clin Pharmacol Ther, 2010, 88(5):643-651.
DOI URL |
[12] |
DINH J C, BOONE E C, STAGGS V S, et al. The impact of the CYP2D6 "enhancer" single nucleotide polymorphism on CYP2D6 activity[J]. Clin Pharmacol Ther, 2022, 111(3):646-654.
DOI URL |
[13] |
TURNER A J, AGGARWAL P, BOONE E C, et al. Identification of CYP2D6 haplotypes that interfere with commonly used assays for copy number variation characterization[J]. J Mol Diagn, 2021, 23(5):577-588.
DOI PMID |
[14] |
NAHID N A, JOHNSON J A. CYP2D6 pharmacogenetics and phenoconversion in personalized medicine[J]. Expert Opin Drug Metab Toxicol, 2022, 18(11):769-785.
DOI URL |
[15] |
WANG Z, LI Q Q, HUANG C K, et al. Determination of CYP450 activities in diabetes mellitus rats by a UHPLC-MS/MS method[J]. J Pharm Biomed Anal, 2023, 224:115191.
DOI URL |
[16] | CHAROENCHOKTHAVEE W, PANOMVANA D, SRIURANPONG V, et al. Prevalence of CYP2D6*2,CYP2D6*4,CYP2D6*10,and CYP3A5*3 in Thai breast cancer patients undergoing tamoxifen treatment[J]. Breast Cancer(Dove Med Press), 2016, 8:149-155. |
[17] |
RAY B, OZCAGLI E, SADEE W, et al. CYP2D6 haplotypes with enhancer SNP rs5758550 and rs16947(*2 allele):implications for CYP2D6 genotyping panels[J]. Pharmacogenet Genomics, 2019, 29(2):39.
DOI URL |
[18] |
ZHOU S F. Polymorphism of human cytochrome P450 2D6 and its clinical significance:part Ⅰ[J]. Clin Pharmacokinet, 2009, 48(11):689-723.
DOI URL |
[19] |
BROUWER J M J L, NIJENHUIS M, SOREE B, et al. Dutch Pharmacogenetics Working Group(DPWG)guideline for the gene-drug interaction between CYP2C19 and CYP2D6 and SSRIs[J]. Eur J Hum Genet, 2022, 30(10):1114-1120.
DOI |
[20] |
CAUDLE K E, SANGKUHL K, WHIRL-CARRILLO M, et al. Standardizing CYP2D6 genotype to phenotype translation:consensus recommendations from the clinical pharmacogenetics implementation consortium and Dutch pharmacogenetics working group[J]. Clin Transl Sci, 2020, 13(1):116-124.
DOI URL |
[21] | 张雄, 姜蕊琪, 刘鹏, 等. 呼伦贝尔地区不同民族CYP2D6和CYP2C19及CYP1A2基因多态性分析[J]. 内蒙古医学杂志, 2020, 52(1):4-8. |
[22] |
ZHANG X, LIU C, ZHOU S, et al. Influence of CYP2D6 gene polymorphisms on the pharmacokinetics of aripiprazole in healthy Chinese subjects[J]. Pharmacogenomics, 2021, 22(4):213-223.
DOI URL |
[23] |
CHEN J, ZHENG J, ZHU Z, et al. Impact of the CYP2D6 genotype on metoprolol tolerance and adverse events in elderly Chinese patients with cardiovascular diseases[J]. Front Pharmacol, 2022, 13:876392.
DOI URL |
[24] |
SORIA-CHACARTEGUI P, ZUBIAUR P, OCHOA D, et al. Genetic variation in CYP2D6 and SLC22A1 affects amlodipine pharmacokinetics and safety[J]. Pharmaceutics, 2023, 15(2):404.
DOI URL |
[25] |
STOJANOVI MARKOVI A, ZAJC PETRANOVI M, ŠKARI-JURI T, et al. Relevance of CYP2D6 gene variants in population genetic differentiation[J]. Pharmaceutics, 2022, 14(11):2481.
DOI URL |
[26] |
ELSAID A M, ZAHRAN R F, ELMETWALY S M, et al. The potential impact of CYP2D6(*2/*4/*10)gene variants among Egyptian epileptic children:a preliminary study[J]. Gene, 2022, 832:146585.
DOI URL |
[27] |
FREDERIKSEN T, AREBERG J, RAOUFINIA A, et al. Estimating the in vivo function of CYP2D6 alleles through population pharmacokinetic modeling of brexpiprazole[J]. Clin Pharmacol Ther, 2023, 113(2):360-369.
DOI URL |
[28] | PharmGKB biogeographical groups. CYP2D6 frequency table[EB/OL]. (2023-05-10)[2022-10-26]. https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Ffiles.cpicpgx.org%2Fdata%2Freport%2Fcurrent%2Ffrequency%2FCYP2D6_frequency_table.xlsx&wdOrigin=BROWSELINK. |
[29] |
LEE C M, KANG P, CHO C K, et al. Physiologically based pharmacokinetic modelling to predict the pharmacokinetics of metoprolol in different CYP2D6 genotypes[J]. Arch Pharm Res, 2022, 45(6):433-445.
DOI |
[30] |
ZANGER U M, MOMOI K, HOFMANN U, et al. Tri-allelic haplotypes determine and differentiate functionally normal allele CYP2D6*2 and impaired allele CYP2D6*41[J]. Clin Pharmacol Ther, 2021, 109(5):1256-1264.
DOI URL |
[31] |
PUAPRASERT K, CHU C, SARALAMBA N, et al. Real time PCR detection of common CYP2D6 genetic variants and its application in a Karen population study[J]. Malar J, 2018, 17(1):427.
DOI |
[32] |
CHEN X, SHEN F, GONZALUDO N, et al. Cyrius:accurate CYP2D6 genotyping using whole-genome sequencing data[J]. Pharmacogenomics J, 2021, 21(2):251-261.
DOI |
[33] |
CHAN E R, MEHLOTRA R K, PIRANI K A, et al. CYP2D6 gene resequencing in the Malagasy,a population at the crossroads between Asia and Africa:a pilot study[J]. Pharmacogenomics, 2022, 23(5):315-325.
DOI URL |
[34] |
STOJANOVI MARKOVI A, ZAJC PETRANOVI M, TOMAS Ž, et al. Untangling SNP variations within CYP2D6 gene in Croatian Roma[J]. J Pers Med, 2022, 12(3):374.
DOI URL |
[35] |
周逸雯, 周琰, 吴炯, 等. CYP3A4、CYP3A5和CYP2D6基因单核苷酸多态性对肾移植术后稳定期患者他克莫司代谢的影响[J]. 检验医学, 2015, 30(11):1091-1095.
DOI |
[36] |
RANADEVA N D K, SIRISENA N D, WETTHASINGHE T K, et al. Design and implementation of a novel pharmacogenetic assay for the identification of the CYP2D6*10 genetic variant[J]. BMC Res Notes, 2022, 15(1):104.
DOI PMID |
[37] | 翟晓艳, 崔炜, 张亚楠, 等. 国人CYP2D6*10基因多态性研究[J]. 河北医科大学学报, 2010, 31(2):128-131. |
[38] |
KANJI C R, NYABADZA G, NHACHI C, et al. Pharmacokinetics of tamoxifen and its major metabolites and the effect of the African ancestry specific CYP2D6*17 variant on the formation of the active metabolite,endoxifen[J]. J Pers Med, 2023, 13(2):272.
DOI URL |
[39] | 柴琳, 刘红, 许莉, 等. 大片段PCR方法检测CYP2D6*5基因分型的选择与优化[J]. 实用药物与临床, 2017, 20(3):307-311. |
[40] |
ZHANG W Y, TU Y B, HAINING R L, et al. Expression and functional analysis of CYP2D6*24,CYP2D6*26,CYP2D6*27,and CYP2D7 isozymes[J]. Drug Metab Dispos, 2009, 37(1):1-4.
DOI URL |
[41] | HINRICHS J W, SMALLEGOOR W D, VAN BAALEN-BENEDEK E H, et al. Detection of CYP2D6 polymorphisms*9,*10,and*41 using ARMS-PCR and their allelic frequencies in 400 psychiatric patients[J]. Clin Chem Lab Med, 2007, 45(4):555-557. |
[42] | 吴建元, 章柏钰, 蔡君龙, 等. CYP2D6*10基因多态性检测体系的建立与评价[J]. 国际检验医学杂志, 2022, 43(14):1713-1720. |
[43] | GAEDIGK A, JAIME L K, BERTINO J S Jr, et al. Identification of novel CYP2D7-2D6 hybrids:non-functional and functional variants[J]. Front Pharmacol, 2010, 1:121. |
[44] |
BLACK J L 3rd, WALKER D L, O'KANE D J, et al. Frequency of undetected CYP2D6 hybrid genes in clinical samples:impact on phenotype prediction[J]. Drug Metab Dispos, 2012, 40(1):111-119.
DOI URL |
[45] |
GAEDIGK A, FUHR U, JOHNSON C, et al. CYP2D7-2D6 hybrid tandems:identification of novel CYP2D6 duplication arrangements and implications for phenotype prediction[J]. Pharmacogenomics, 2010, 11(1):43-53.
DOI URL |
[46] | 刘金辉, 方亚妮. 西安汉族人群CYP2D6基因拷贝数变异与串联重组多态性研究[J]. 中国实验诊断学, 2022, 26(12):1739-1743. |
[47] |
SCHAEFFELER E, SCHWAB M, EICHELBAUM M, et al. CYP2D6 genotyping strategy based on gene copy number determination by TaqMan real-rime PCR[J]. Hum Mutat, 2003, 22(6):476-485.
DOI URL |
[48] |
JUKIC M M, LAUSCHKE V M, SAITO T, et al. Functional characterization of CYP2D7 gene variants[J]. Pharmacogenomics, 2018, 19(12):931-936.
DOI URL |
[49] | RIFFEL A K, DEHGHANI M, HARTSHORNE T, et al. CYP2D7 sequence variation interferes with TaqMan CYP2D6(*)15 and(*)35 genotyping[J]. Front Pharmacol, 2016, 6:312. |
[50] |
CHARNAUD S, MUNRO J E, SEMENEC L, et al. PacBio long-read amplicon sequencing enables scalable high-resolution population allele typing of the complex CYP2D6 locus[J]. Commun Biol, 2022, 5(1):168.
DOI PMID |
[51] |
FUKUNAGA K, HISHINUMA E, HIRATSUKA M, et al. Determination of novel CYP2D6 haplotype using the targeted sequencing followed by the long-read sequencing and the functional characterization in the Japanese population[J]. J Hum Genet, 2021, 66(2):139-149.
DOI |
[52] | HUANG H, DONG Y, XU Y, et al. The association of CYP2D6 gene polymorphisms in the full-length coding region with higher recurrence rate of vivax malaria in Yunnan Province,China[J]. Malar J, 2021, 201(1):160. |
[53] |
WEN Y F, GAEDIGK A, BOONE E C, et al. The identification of novel CYP2D6 variants in US Hmong:results from genome sequencing and clinical genotyping[J]. Front Pharmacol, 2022, 13:867331.
DOI URL |
[1] | 周丽君, 于婷, 王能勇. 骨髓增生异常综合征合并肥大细胞白血病1例报道[J]. 检验医学, 2025, 40(1): 37-40. |
[2] | 刘亚东, 杨磊, 宋少婷, 杜雄, 刘强, 孙建荣. Lp-PLA2基因多态性与颈动脉斑块组织病理染色结果的相关性[J]. 检验医学, 2024, 39(7): 621-626. |
[3] | 丁静, 张春玲, 王小蕊, 李会丹, 王洪玲, 刘伟玲, 蔺丽慧, 李莉. 核心结合因子相关急性髓系白血病的实验室诊断和预后影响因素分析[J]. 检验医学, 2024, 39(7): 673-681. |
[4] | 赵倩, 曾利敏, 周丽平, 齐林. CYP2C19基因多态性、miR-374b-5p与ACI患者神经功能缺损和近期预后的关系[J]. 检验医学, 2024, 39(6): 536-541. |
[5] | 赵莹, 陆娄恺奕, 戴斯佳, 陈艺升. MTHFR基因C677T位点多态性与PCOS患者胰岛素抵抗的关系[J]. 检验医学, 2024, 39(6): 562-567. |
[6] | 路超, 韩慧娟, 狄华, 穆艳超. MYH7基因c.1574A>G突变致扩张型心肌病1S型家系分析[J]. 检验医学, 2024, 39(2): 138-142. |
[7] | 赵而玉, 李玉杰, 于婷, 张燕, 叶荃, 龙云霞, 马晓云, 王晓燕. FGG基因Ala315Gly错义突变致遗传性异常纤维蛋白原血症家系分析[J]. 检验医学, 2024, 39(2): 143-148. |
[8] | 刘洋, 何成山, 蒋秀娣, 陆志成. HBV PreS/S区基因突变诱导肝细胞内质网应激致肝细胞肝癌相关机制研究进展[J]. 检验医学, 2024, 39(12): 1229-1233. |
[9] | 谢昕, 史利欢, 范朋凯, 陈静. KIT突变与核心结合因子急性髓系白血病患儿临床特征和预后的关系[J]. 检验医学, 2024, 39(10): 1010-1014. |
[10] | 彭寿宁, 邓维聪, 符燕波, 吴燕妮. 精神分裂症患者KCNH2和CACNA1C基因多态性及其与认知功能的相关性[J]. 检验医学, 2023, 38(8): 742-747. |
[11] | 张旭明, 尹伟明, 高婧. 深圳市宝安地区妊娠期甲状腺功能减退患者UGT1A1基因多态性与妊娠期合并症和不良妊娠结局的关系[J]. 检验医学, 2023, 38(7): 665-668. |
[12] | 卢小娟, 罗秋平, 汪红艳, 汪俊, 高婧, 孟伟伟. 深圳市宝安地区HBV阳性孕妇HLA-DQ基因多态性与HBV宫内感染的相关性[J]. 检验医学, 2023, 38(4): 382-384. |
[13] | 李牧, 龚东亮, 徐黎明, 彭荣. XPC rs2228000位点多态性与乳腺癌发病的关系[J]. 检验医学, 2023, 38(3): 235-239. |
[14] | 聂甜, 冉子涵, 金磊. 白细胞介素基因多态性与胃癌的相关性研究进展[J]. 检验医学, 2022, 37(9): 882-886. |
[15] | 王玲玲, 任春丽. MTHFR基因C677T位点多态性及血脂水平与GDM的关系[J]. 检验医学, 2022, 37(6): 543-546. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||