检验医学 ›› 2025, Vol. 40 ›› Issue (11): 1118-1125.DOI: 10.3969/j.issn.1673-8640.2025.11.016
收稿日期:2024-10-09
修回日期:2024-12-29
出版日期:2025-11-30
发布日期:2025-12-12
通讯作者:
王 蕊,E-mail:ruiwang5343@tmu.edu.cn。
作者简介:董奕涵,女,2001年生,学士,主要从事医学检验技术研究。
基金资助:
DONG Yihan1, LIU Shiming1, WANG Yong2, YUE Dan1, WANG Rui1(
)
Received:2024-10-09
Revised:2024-12-29
Online:2025-11-30
Published:2025-12-12
摘要:
肾癌是泌尿系统常见肿瘤。外泌体参与细胞间通讯、肿瘤细胞免疫逃逸、血管生成、转移和耐药等多个肿瘤发生、发展环节。外泌体在肾癌早期诊断、治疗和预后评估中具有重要作用,临床应用前景良好。文章介绍了外泌体的分离、提取和鉴定方法,阐述了外泌体在肾癌中的作用及其机制,以及外泌体在肾癌诊断、治疗和预后中的作用。
中图分类号:
董奕涵, 刘士铭, 王勇, 岳丹, 王蕊. 外泌体的提取和鉴定及其在肾癌中的作用[J]. 检验医学, 2025, 40(11): 1118-1125.
DONG Yihan, LIU Shiming, WANG Yong, YUE Dan, WANG Rui. Research progress of exosome extraction and identification in renal cancer[J]. Laboratory Medicine, 2025, 40(11): 1118-1125.
| 分离技术 | 分离原理 | 优点 | 缺点 | 试剂盒/开发平台 |
|---|---|---|---|---|
| UC | 基于外泌体大小、密度差异进行分离 | 适合大批量样本,无需特殊试剂 | 耗时长,成本高,纯度较低,易损伤外泌体 | 无 |
| 密度梯度离心法 | 基于外泌体大小、密度差异进行分离 | 可保持外泌体活性和形态,纯度较高 | 工作量大,操作复杂,耗时长,不适合大批量样本 | 无 |
| PEG沉淀法 | 根据化合物与外泌体的理化特性,利用共沉淀或反向筛选进行分离 | 操作简单,耗时短,无设备限制 | 纯度较低,存在假阳性,可能破坏外泌体,干扰下游分析 | ExoQuic(美国System Biosciences公司)、ExoPerp(爱沙尼亚HansaBioMed公司) |
| 免疫亲和法 | 根据外泌体膜表面抗原与抗体特异性结合 | 纯度较高,特异性和重复性好,操作简便,无设备限制 | 不适合大批量样本,可能破坏外泌体,成本高 | CUSABIO(武汉华美公司) |
| 超滤法 | 根据外泌体粒子粒径进行分离 | 耗时短,操作简便 | 分离效率和纯度较低,影响外泌体形态 | ExoMir Kit(美国Bio Scientific公司) |
| SEC | 根据外泌体粒子粒径进行分离 | 纯度较高,操作简便,不影响外泌体结构 | 耗时长,容易损失,需要特殊设备 | Exo-Spin(英国CellGuidance Systems公司)、Exosupur(北京恩泽康泰公司) |
| 微流控技术 | 根据外泌体粒径大小、动力学、免疫亲和性进行分离 | 操作简便,纯度较高,不影响外泌体形态 | 不适合大批量样本,应用较少 | EXODUS系统(清华大学蛋白质研究技术中心)[ |
| 磁分离 | 通过附着外泌体表面特异性生物标志物的肽或抗体的磁珠进行分离 | 尿外泌体高通量分离,形式更完整,稳定表达特征蛋白 | 不能同时实现外泌体分离和定量测定 | EVrich外泌体分离系统(南京逸微健华公司)[ |
| 基于适配子的分离 | 通过与结构化的寡核苷酸序列结合进行分离 | 连续富集尿液外泌体并提取其代谢特征,具有高特异性和亲和力 | 无 | 适配体偶联多态碳材料CoMPCAu-Apt(复旦大学)[ |
表1 外泌体分离提取方法
| 分离技术 | 分离原理 | 优点 | 缺点 | 试剂盒/开发平台 |
|---|---|---|---|---|
| UC | 基于外泌体大小、密度差异进行分离 | 适合大批量样本,无需特殊试剂 | 耗时长,成本高,纯度较低,易损伤外泌体 | 无 |
| 密度梯度离心法 | 基于外泌体大小、密度差异进行分离 | 可保持外泌体活性和形态,纯度较高 | 工作量大,操作复杂,耗时长,不适合大批量样本 | 无 |
| PEG沉淀法 | 根据化合物与外泌体的理化特性,利用共沉淀或反向筛选进行分离 | 操作简单,耗时短,无设备限制 | 纯度较低,存在假阳性,可能破坏外泌体,干扰下游分析 | ExoQuic(美国System Biosciences公司)、ExoPerp(爱沙尼亚HansaBioMed公司) |
| 免疫亲和法 | 根据外泌体膜表面抗原与抗体特异性结合 | 纯度较高,特异性和重复性好,操作简便,无设备限制 | 不适合大批量样本,可能破坏外泌体,成本高 | CUSABIO(武汉华美公司) |
| 超滤法 | 根据外泌体粒子粒径进行分离 | 耗时短,操作简便 | 分离效率和纯度较低,影响外泌体形态 | ExoMir Kit(美国Bio Scientific公司) |
| SEC | 根据外泌体粒子粒径进行分离 | 纯度较高,操作简便,不影响外泌体结构 | 耗时长,容易损失,需要特殊设备 | Exo-Spin(英国CellGuidance Systems公司)、Exosupur(北京恩泽康泰公司) |
| 微流控技术 | 根据外泌体粒径大小、动力学、免疫亲和性进行分离 | 操作简便,纯度较高,不影响外泌体形态 | 不适合大批量样本,应用较少 | EXODUS系统(清华大学蛋白质研究技术中心)[ |
| 磁分离 | 通过附着外泌体表面特异性生物标志物的肽或抗体的磁珠进行分离 | 尿外泌体高通量分离,形式更完整,稳定表达特征蛋白 | 不能同时实现外泌体分离和定量测定 | EVrich外泌体分离系统(南京逸微健华公司)[ |
| 基于适配子的分离 | 通过与结构化的寡核苷酸序列结合进行分离 | 连续富集尿液外泌体并提取其代谢特征,具有高特异性和亲和力 | 无 | 适配体偶联多态碳材料CoMPCAu-Apt(复旦大学)[ |
| [1] | 季志强, 罗宇婷, 王庆, 等. 各类外泌体与肾癌发生发展、耐药的研究进展[J]. 贵州医药, 2024, 48(8):1198-1201. |
| [2] |
ARYA S B, COLLIE S P, PARENT C A. The ins-and-outs of exosome biogenesis,secretion,and internalization[J]. Trends Cell Biol, 2024, 34(2):90-108.
DOI URL |
| [3] | THONGBOONKERD V. Roles for exosome in various kidney diseases and disorders[J]. Front Pharmacol, 2020,10:1655. |
| [4] | 徐艺, 姚月, 余良. 外泌体分离提取技术的研究进展[J]. 湖北理工学院学报, 2023, 39(1):50-54. |
| [5] |
TANG H, YU D, ZHANG J, et al. The new advance of exosome-based liquid biopsy for cancer diagnosis[J]. J Nanobiotechnology, 2024, 22(1):610.
DOI |
| [6] |
CHEN Y, ZHU Q, CHENG L, et al. Exosome detection via the ultrafast-isolation system:EXODUS[J]. Nat Methods, 2021, 18(2):212-218.
DOI |
| [7] | KWAK T J, SON T, HONG J S, et al. Electrokinetically enhanced label-free plasmonic sensing for rapid detection of tumor-derived extracellular vesicles[J]. Biosens Bioelectron, 2023,237:115422. |
| [8] |
ZHANG H, CAI Y H, DING Y, et al. Proteomics,phosphoproteomics and mirna analysis of circulating extracellular vesicles through automated and high-throughput isolation[J]. Cells, 2022, 11(13):2070.
DOI URL |
| [9] |
CHEN H, HUANG C, WU Y, et al. Exosome metabolic patterns on aptamer-coupled polymorphic carbon for precise detection of early gastric cancer[J]. ACS Nano, 2022, 16(8):12952-12963.
DOI PMID |
| [10] | VISAN K S, WU L Y, VOSS S, et al. Status quo of extracellular vesicle isolation and detection methods for clinical utility[J]. Semin Cancer Biol, 2023,88:157-171. |
| [11] |
XIANG X, GUAN F, JIAO F, et al. A new urinary exosome enrichment method by a combination of ultrafiltration and TiO2 nanoparticles[J]. Anal Methods, 2021, 13(13):1591-1600.
DOI URL |
| [12] | SUN Z, WU Y, GAO F, et al. In situ detection of exosomal RNAs for cancer diagnosis[J]. Acta Biomater, 2023,155:80-98. |
| [13] |
CHEN W, LI Z, CHENG W, et al. Surface plasmon resonance biosensor for exosome detection based on reformative tyramine signal amplification activated by molecular aptamer beacon[J]. J Nanobiotechnology, 2021, 19(1):450.
DOI |
| [14] |
HO KHW, LAI H, ZHANG R, et al. SERS-based droplet microfluidic platform for sensitive and high-throughput detection of cancer exosomes[J]. ACS Sens, 2024, 9(9):4860-4869.
DOI URL |
| [15] | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. |
| [16] | QIN Z, XU Q, HU H, et al. Extracellular vesicles in renal cell carcinoma:multifaceted roles and potential applications identified by experimental and computational methods[J]. Front Oncol, 2020,10:724. |
| [17] |
KOCHAN G, ESCORS D, BRECKPOT K, et al. Role of non-classical MHC class Ⅰ molecules in cancer immunosuppression[J]. Oncoimmunology, 2013, 2(11):e26491.
DOI URL |
| [18] |
YANG L, WU X, WANG D, et al. Renal carcinoma cell-derived exosomes induce human immortalized line of Jurkat T lymphocyte apoptosis in vitro[J]. Urol Int, 2013, 91(3):363-369.
DOI PMID |
| [19] |
ZHANG W, ZHENG X, YU Y, et al. Renal cell carcinoma-derived exosomes deliver lncARSR to induce macrophage polarization and promote tumor progression via STAT3 pathway[J]. Int J Biol Sci, 2022, 18(8):3209-3222.
DOI PMID |
| [20] |
HE X, XU C. Immune checkpoint signaling and cancer immunotherapy[J]. Cell Res, 2020, 30(8):660-669.
DOI PMID |
| [21] |
SHIN S J, JEON Y K, KIM P J, et al. Clinicopathologic analysis of PD-L1 and PD-L2 expression in renal cell carcinoma:association with oncogenic proteins status[J]. Ann Surg Oncol, 2016, 23(2):694-702.
PMID |
| [22] |
LIU T, CHENG S, PENG B, et al. PD-L2 of tumor-derived exosomes mediates the immune escape of cancer cells via the impaired T cell function[J]. Cell Death Dis, 2024, 15(11):800.
DOI PMID |
| [23] |
LI Y L, WU L W, ZENG L H, et al. ApoC1 promotes the metastasis of clear cell renal cell carcinoma via activation of STAT3[J]. Oncogene, 2020, 39(39):6203-6217.
DOI |
| [24] |
FLORA K, ISHIHARA M, ZHANG Z, et al. Exosomes from von hippel-lindau-null cancer cells promote metastasis in renal cell carcinoma[J]. Int J Mol Sci, 2023, 24(24):17307.
DOI URL |
| [25] |
LI D Y, LIN F F, LI G P, et al. Exosomal microRNA-15a from ACHN cells aggravates clear cell renal cell carcinoma via the BTG2/PI3K/AKT axis[J]. Kaohsiung J Med Sci, 2021, 37(11):973-982.
DOI URL |
| [26] |
DING M, ZHAO X, CHEN X, et al. Cancer-associated fibroblasts promote the stemness and progression of renal cell carcinoma via exosomal miR-181d-5p[J]. Cell Death Discov, 2022, 8(1):439.
DOI PMID |
| [27] |
GRANGE C, BROSSA A, BUSSOLATI B. Extracellular vesicles and carried mirnas in the progression of renal cell carcinoma[J]. Int J Mol Sci, 2019, 20(8):1832.
DOI URL |
| [28] |
HORIE K, KAWAKAMI K, FUJITA Y, et al. Exosomes expressing carbonic anhydrase 9 promote angiogenesis[J]. Biochem Biophys Res Commun, 2017, 492(3):356-361.
DOI URL |
| [29] |
LIU Y, ZHAO L, LI D, et al. Microvesicle-delivery miR-150 promotes tumorigenesis by up-regulating VEGF,and the neutralization of miR-150 attenuate tumor development[J]. Protein Cell, 2013, 4(12):932-941.
DOI URL |
| [30] |
WANG L, YANG G, ZHAO D, et al. CD103-positive CSC exosome promotes EMT of clear cell renal cell carcinoma:role of remote miR-19b-3p[J]. Mol Cancer, 2019, 18(1):86.
DOI |
| [31] | 陈琼. 肾癌细胞外泌体在肾癌肺转移中的功能及机制研究[D]. 上海: 中国人民解放军海军军医大学, 2020. |
| [32] | 龚文亮. 肾癌细胞外泌体在肺转移前微环境中调控巨噬细胞发生免疫抑制的研究[D]. 上海: 中国人民解放军海军军医大学, 2024. |
| [33] |
SHU G, LU X, PAN Y, et al. Exosomal circSPIRE1 mediates glycosylation of E-cadherin to suppress metastasis of renal cell carcinoma[J]. Oncogene, 2023, 42(22):1802-1820.
DOI |
| [34] |
HE J, HE J, MIN L, et al. Extracellular vesicles transmitted miR-31-5p promotes sorafenib resistance by targeting MLH1 in renal cell carcinoma[J]. Int J Cancer, 2020, 146(4):1052-1063.
DOI PMID |
| [35] | PAN Y, LU X, SHU G, et al. Extracellular vesicle-mediated transfer of lncRNA IGFL2-AS1 confers sunitinib resistance in renal cell carcinoma[J]. Cancer Res, 2023, 83(1):103-116. |
| [36] |
WU Q, YANG Z, XIA L, et al. Methylation of miR-129-5p CpG island modulates multi-drug resistance in gastric cancer by targeting ABC transporters[J]. Oncotarget, 2014, 5(22):11552-11563.
DOI PMID |
| [37] | TO K K W, HUANG Z, ZHANG H, et al. Utilizing non-coding RNA-mediated regulation of ATP binding cassette(ABC)transporters to overcome multidrug resistance to cancer chemotherapy[J]. Drug Resist Updat, 2024,73:101058. |
| [38] |
GREENBERG J W, KIM H, MOUSTAFA A A, et al. Repurposing ketoconazole as an exosome directed adjunct to sunitinib in treating renal cell carcinoma[J]. Sci Rep, 2021, 11(1):10200.
DOI PMID |
| [39] | GREENBERG J W, KIM H, AHN M, et al. Combination of tipifarnib and sunitinib overcomes renal cell carcinoma resistance to tyrosine kinase inhibitors via tumor-derived exosome and T cell modulation[J]. Cancers(Basel), 2022, 14(4):903. |
| [40] |
HE X, TIAN F, GUO F, et al. Circulating exosomal mRNA signatures for the early diagnosis of clear cell renal cell carcinoma[J]. BMC Med, 2022, 20(1):270.
DOI PMID |
| [41] |
BUTZ H, NOFECH-MOZES R, DING Q, et al. Exosomal microRNAs are diagnostic biomarkers and can mediate cell-cell communication in renal cell carcinoma[J]. Eur Urol Focus, 2016, 2(2):210-218.
DOI PMID |
| [42] |
SONG S, LONG M, YU G, et al. Urinary exosome miR-30c-5p as a biomarker of clear cell renal cell carcinoma that inhibits progression by targeting HSPA5[J]. J Cell Mol Med, 2019, 23(10):6755-6765.
DOI PMID |
| [43] |
DU M, GIRIDHAR K V, TIAN Y, et al. Plasma exosomal miRNAs-based prognosis in metastatic kidney cancer[J]. Oncotarget, 2017, 8(38):63703-63714.
DOI PMID |
| [44] |
刘建星, 王金鹏, 耿新龙, 等. 尿液外泌体miR-214表达在透明细胞肾细胞癌诊断和预后评估中的价值[J]. 检验医学, 2024, 39(10):969-974.
DOI |
| [45] | ELSHARKASY O M, NORDIN J Z, HAGEY D W, et al. Extracellular vesicles as drug delivery systems:why and how?[J]. Adv Drug Deliv Rev, 2020,159:332-343. |
| [46] | 邹元章, 何宜宸, 陈兵海. 伪基因和长链非编码RNA在肾透明细胞癌患者血浆中的表达与临床意义[J]. 江苏大学学报(医学版), 2020, 30(4):312-319. |
| [47] | 申细保. 尿液外泌体NGAL在肾癌诊断的应用[D]. 南昌: 南昌大学医学部, 2018. |
| [48] |
贺大林, 徐珊, 郭鹏. 外泌体在泌尿系肿瘤精准诊断中的应用[J]. 北京大学学报(医学版), 2017, 49(4):561-564.
DOI |
| [49] |
SKOTLAND T, HESSVIK N P, SANDVIG K, et al. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology[J]. J Lipid Res, 2019, 60(1):9-18.
DOI PMID |
| [50] |
ZHAO Y, WANG Y, ZHAO E, et al. PTRF/CAVIN1,regulated by SHC1 through the EGFR pathway,is found in urine exosomes as a potential biomarker of ccRCC[J]. Carcinogenesis, 2020, 41(3):274-283.
DOI URL |
| [51] |
JUNG I, SHIN S, BAEK M C, et al. Modification of immune cell-derived exosomes for enhanced cancer immunotherapy:current advances and therapeutic applications[J]. Exp Mol Med, 2024, 56(1):19-31.
DOI |
| [52] |
LI D, LIN F, LI G, et al. Exosomes derived from mesenchymal stem cells curbs the progression of clear cell renal cell carcinoma through T-cell immune response[J]. Cytotechnology, 2021, 73(4):593-604.
DOI PMID |
| [53] | LI J, LI J, PENG Y, et al. Dendritic cell derived exosomes loaded neoantigens for personalized cancer immunotherapies[J]. J Control Release, 2023,353:423-433. |
| [54] |
CHEN J, YANG J, WANG W, et al. Tumor extracellular vesicles mediate anti-PD-L1 therapy resistance by decoying anti-PD-L1[J]. Cell Mol Immunol, 2022, 19(11):1290-1301.
DOI PMID |
| [55] |
CHEN R, KANG Z, LI W, et al. Extracellular vesicle surface display of αPD-L1 and αCD3 antibodies via engineered late domain-based scaffold to activate T-cell anti-tumor immunity[J]. J Extracell Vesicles, 2024, 13(7):e12490.
DOI URL |
| [56] | KUMAR M A, BABA S K, SADIDA H Q, et al. Extracellular vesicles as tools and targets in therapy for diseases[J]. Signal Transduct Target Ther, 2024, 9(1):27. |
| [57] |
OHNO S, TAKANASHI M, SUDO K, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells[J]. Mol Ther, 2013, 21(1):185-191.
DOI URL |
| [1] | 高现同, 姚倩倩, 汝丽娟. 急性胰腺炎并发AKI早期预警模型的建立和临床应用评价[J]. 检验医学, 2025, 40(8): 775-781. |
| [2] | 田泽, 刘宏瑞, 司文喆. 外泌体微小RNA作为肝细胞肝癌生物标志物的研究进展[J]. 检验医学, 2025, 40(4): 317-323. |
| [3] | 郭凤霞, 胡冰, 沙燕华. 冠心病患者甲基转移酶样蛋白14水平检测的价值[J]. 检验医学, 2025, 40(1): 54-58. |
| [4] | 刘芮杉, 龙凤鸣, 邹成丽. 支气管哮喘患儿血清外泌体miR-93-5p检测的价值[J]. 检验医学, 2024, 39(5): 449-453. |
| [5] | 王榕, 高春芳. 外泌体糖基化在肿瘤诊断和治疗中的应用进展[J]. 检验医学, 2024, 39(4): 404-409. |
| [6] | 邹琛, 徐润灏, 丁毅, 张洁, 翁文浩, 王震华, 曹芸. 基于ProteomeXchange数据库建立结直肠癌筛查模型[J]. 检验医学, 2024, 39(12): 1181-1189. |
| [7] | 崔晓阳, 刘国栋, 郭慧娟, 廖志宏, 刘运洪, 张伟芬, 陈子尧, 魏晓珠. 血清外泌体CEA、CA15-3和CA125水平在非小细胞肺癌和肺部良性病变鉴别诊断中的价值[J]. 检验医学, 2024, 39(11): 1035-1041. |
| [8] | 刘俊汝, 李萌, 徐阳, 郑伟英. 尿外泌体miR-27a、miR-27b、miR-29c、miR-200c在早期糖尿病肾病诊断中的价值[J]. 检验医学, 2024, 39(11): 1053-1059. |
| [9] | 刘建星, 王金鹏, 耿新龙, 王珊. 尿液外泌体miR-214表达在透明细胞肾细胞癌诊断和预后评估中的价值[J]. 检验医学, 2024, 39(10): 969-974. |
| [10] | 孙泽朋, 王洪彬, 王建东, 宋德伟, 肖鹏. 心肌损伤多肽和蛋白类标志物方法学分析和进展[J]. 检验医学, 2023, 38(8): 784-789. |
| [11] | 陈文举, 周勇, 徐佳佳, 王攀. 血清外泌体miR-23b-3p和miR-4429诊断HCC的价值[J]. 检验医学, 2023, 38(7): 624-628. |
| [12] | 张敏, 王彬宇, 迟伟群, 刘禹. 外泌体非编码RNA作为疾病诊断生物标志物的研究进展[J]. 检验医学, 2023, 38(6): 594-598. |
| [13] | 吴炯, 胡嘉华, 施美芳, 刘涛, 戴洁, 卢忻怡, 邹政. 前列腺癌生物标志物研究进展[J]. 检验医学, 2023, 38(2): 190-195. |
| [14] | 刘庆阳, 袁建明, 夏进军, 姜风英, 王秋波, 王晓明. 基于GEO数据库和临床样本验证CXCL9作为类风湿关节炎生物标志物的研究[J]. 检验医学, 2023, 38(12): 1121-1129. |
| [15] | 周福荣, 李龑杼, 刘勇敢. lncRNA SNP在结直肠癌易感性预测和预后评估中的应用[J]. 检验医学, 2023, 38(12): 1206-1210. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||