检验医学 ›› 2024, Vol. 39 ›› Issue (4): 404-409.DOI: 10.3969/j.issn.1673-8640.2024.04.016
收稿日期:
2023-03-24
修回日期:
2023-10-11
出版日期:
2024-04-30
发布日期:
2024-05-07
通讯作者:
高春芳,E-mail:gaocf1115@163.com。
作者简介:
王 榕,女,1998年生,硕士,主要从事肿瘤分子免疫标志物研究。
基金资助:
Received:
2023-03-24
Revised:
2023-10-11
Online:
2024-04-30
Published:
2024-05-07
摘要:
外泌体是细胞通讯的重要媒介,在细胞之间运送RNA、蛋白质和脂质等物质。糖链是外泌体的重要成分。糖基化是蛋白质的重要翻译后修饰,可通过糖基转移酶的作用把糖链转移至蛋白质,丰富了蛋白质的功能和信息含义,可为疾病的诊断和治疗提供新的生物标志物和干预靶标。外泌体与肿瘤母细胞存在一致的异常糖链,其糖基化或可成为循环肿瘤标志物。文章探讨了外泌体糖基化的生理意义、临床价值和治疗应用前景,并介绍了外泌体的捕获技术,这些技术为外泌体糖基化的深入研究提供了方法学支持。外泌体糖基化的研究将为液体活检应用于恶性肿瘤的精确诊断、高危预警和全程精准管理提供新的策略。
中图分类号:
王榕, 高春芳. 外泌体糖基化在肿瘤诊断和治疗中的应用进展[J]. 检验医学, 2024, 39(4): 404-409.
WANG Rong, GAO Chunfang. Application progress of exosomal glycosylation in diagnosis and treatment of tumors[J]. Laboratory Medicine, 2024, 39(4): 404-409.
样本类型 | 生物标志物 | 疾病 | 参考文献 |
---|---|---|---|
尿 | 四天线聚糖结构 | 前列腺癌 | [ |
尿 | 凝集素的结合谱 | 常染色体显性遗传性多囊肾 | [ |
尿 | 两天线结构 | 半乳糖血症 | [ |
尿 | 富含亮氨酸α2糖蛋白 | 非小细胞肺癌 | [ |
血 | 蛋白质O-Glc NAC修饰水平 | 结直肠癌 | [ |
血 | Α-2-HS-糖蛋白 | 非小细胞肺癌 | [ |
血 | 触珠蛋白的岩藻糖基化水平 | 胆管癌 | [ |
血 | 黏蛋白-1 | 非小细胞肺癌 | [ |
腹水 | CD24 | 卵巢癌 | [ |
腹水 | 可溶性半乳糖凝集素3结合蛋白 | 卵巢癌 | [ |
腹水 | CD133和糖基化水平 | 卵巢癌 | [ |
表1 外泌体糖基化生物标志物
样本类型 | 生物标志物 | 疾病 | 参考文献 |
---|---|---|---|
尿 | 四天线聚糖结构 | 前列腺癌 | [ |
尿 | 凝集素的结合谱 | 常染色体显性遗传性多囊肾 | [ |
尿 | 两天线结构 | 半乳糖血症 | [ |
尿 | 富含亮氨酸α2糖蛋白 | 非小细胞肺癌 | [ |
血 | 蛋白质O-Glc NAC修饰水平 | 结直肠癌 | [ |
血 | Α-2-HS-糖蛋白 | 非小细胞肺癌 | [ |
血 | 触珠蛋白的岩藻糖基化水平 | 胆管癌 | [ |
血 | 黏蛋白-1 | 非小细胞肺癌 | [ |
腹水 | CD24 | 卵巢癌 | [ |
腹水 | 可溶性半乳糖凝集素3结合蛋白 | 卵巢癌 | [ |
腹水 | CD133和糖基化水平 | 卵巢癌 | [ |
方法 | 原理 | 优点 | 缺点 | 纯度 | 参考文献 |
---|---|---|---|---|---|
超速离心法 | 大小和密度不同的成分具有不同的沉积速度 | 适合大批量样本,技术成熟 | 耗时长,操作繁琐,产量低,容易对外泌体造成机械损伤 | 中 | [ |
过滤法 | 根据组分的尺寸来分离分子 | 不需要特殊设备和试剂 | 过滤膜堵塞,小粒径外泌体损失 | 高 | [ |
沉淀法 | 利用电荷或水化膜使外泌体聚集沉淀 | 操作简单,适用于大体积样本 | 易共沉淀非囊泡物质 | 低 | [ |
免疫亲和层析法 | 将抗体共价连接到固相材料上,利用抗原抗体的特异性结合分离 | 外泌体亚型分离特异性高 | 成本高,取决于抗体的特异性 | 高 | [ |
凝集素捕获法 | 外泌体表面丰富的糖链可以和凝集素结合 | 简便、快速、精准分离,重复性好,分离后的外泌体形态完整 | 凝集素亲和力不足,组织渗透性差 | 高 | [ |
表2 外泌体分离方法的原理、优缺点和纯度
方法 | 原理 | 优点 | 缺点 | 纯度 | 参考文献 |
---|---|---|---|---|---|
超速离心法 | 大小和密度不同的成分具有不同的沉积速度 | 适合大批量样本,技术成熟 | 耗时长,操作繁琐,产量低,容易对外泌体造成机械损伤 | 中 | [ |
过滤法 | 根据组分的尺寸来分离分子 | 不需要特殊设备和试剂 | 过滤膜堵塞,小粒径外泌体损失 | 高 | [ |
沉淀法 | 利用电荷或水化膜使外泌体聚集沉淀 | 操作简单,适用于大体积样本 | 易共沉淀非囊泡物质 | 低 | [ |
免疫亲和层析法 | 将抗体共价连接到固相材料上,利用抗原抗体的特异性结合分离 | 外泌体亚型分离特异性高 | 成本高,取决于抗体的特异性 | 高 | [ |
凝集素捕获法 | 外泌体表面丰富的糖链可以和凝集素结合 | 简便、快速、精准分离,重复性好,分离后的外泌体形态完整 | 凝集素亲和力不足,组织渗透性差 | 高 | [ |
[1] |
JOHNSTONE R M, ADAM M, HAMMOND J R, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles(exosomes)[J]. J Biol Chem, 1987, 262(19):9412-9420.
DOI URL |
[2] |
HOSSEINI K, RANJBAR M, PIRPOUR TAZEHKAND A, et al. Evaluation of exosomal non-coding RNAs in cancer using high-throughput sequencing[J]. J Transl Med, 2022, 20(1):30.
DOI PMID |
[3] | KALLURI R, LEBLEU V S. The biology,function,and biomedical applications of exosomes[J]. Science, 2020, 367(6478):eaau6977. |
[4] |
NOONIN C, THONGBOOMKERD V. Exosome-inflammasome crosstalk and their roles in inflammatory responses[J]. Theranostics, 2021, 11(9):4436-4451.
DOI PMID |
[5] |
PATHANIA A S, PRATHIPATI P, CHALLAGUNDLA K B. New insights into exosome mediated tumor-immune escape:clinical perspectives and therapeutic strategies[J]. Biochim Biophys Acta Rev Cancer, 2021, 1876(2):188624.
DOI URL |
[6] |
HOSHINO A, COSTA-SILVA B, SHEN T L, et al. Tumour exosome integrins determine organotropic metastasis[J]. Nature, 2015, 527(7578):329-335.
DOI |
[7] | HASLUND-GOURLEY B S, WIGDAHL B, COMUNALE M A. IgG N-glycan signatures as potential diagnostic and prognostic biomarkers[J]. Diagnostics(Basel), 2023, 13(6):1016. |
[8] |
WANG M, ZHU J, LUBMAN D M, et al. Aberrant glycosylation and cancer biomarker discovery:a promising and thorny journey[J]. Clin Chem Lab Med, 2019, 57(4):407-416.
DOI URL |
[9] |
VARKI A. Biological roles of glycans[J]. Glycobiology, 2017, 27(1):3-49.
DOI PMID |
[10] | RODRIGUES J G, BALMAA M, MACEDO J A, et al. Glycosylation in cancer:selected roles in tumour progression,immune modulation and metastasis[J]. Cell Immunol, 2018,333:46-57. |
[11] |
TOUSTOU C, WALET-BALIEU M L, KIEFER-MEYER M C, et al. Towards understanding the extensive diversity of protein N-glycan structures in eukaryotes[J]. Biol Rev Camb Philos Soc, 2022, 97(2):732-748.
DOI URL |
[12] |
VAJARIA B N, PATEL P S. Glycosylation:a hallmark of cancer?[J]. Glycoconj J, 2017, 34(2):147-156.
DOI URL |
[13] |
GANDHI N S, MANCERA R L. The structure of glycosaminoglycans and their interactions with proteins[J]. Chem Biol Drug Des, 2008, 72(6):455-482.
DOI PMID |
[14] |
KANNAGI R, IZAWA M, KOIKE T, et al. Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis[J]. Cancer Sci, 2004, 95(5):377-384.
DOI URL |
[15] |
DENNIS J W, LAFERTÉ S, WAGHORNE C, et al. Beta 1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis[J]. Science, 1987, 236(4801):582-585.
DOI URL |
[16] |
HUANG C, FANG M, FENG H, et al. N-glycan fingerprint predicts alpha-fetoprotein negative hepatocellular carcinoma:a large-scale multicenter study[J]. Int J Cancer, 2021, 149(3):717-727.
DOI URL |
[17] | SALUNKHE S, DHEERAJ, BASAK M, et al. Surface functionalization of exosomes for target-specific delivery and in vivo imaging & tracking:strategies and significance[J]. J Control Release, 2020,326:599-614. |
[18] | STOWELL S R, JU T, CUMMINGS R D. Protein glycosylation in cancer[J]. Annu Rev Pathol, 2015,10:473-510. |
[19] |
LIANG Y, ENG W S, COLQUHOUN D R, et al. Complex N-linked glycans serve as a determinant for exosome/microvesicle cargo recruitment[J]. J Biol Chem, 2014, 289(47):32526-32537.
DOI PMID |
[20] |
KORE R A, ABRAHAM E C. Phosphorylation negatively regulates exosome mediated secretion of cryAB in glioma cells[J]. Biochim Biophys Acta, 2016, 1863(2):368-377.
DOI PMID |
[21] | SZABÓ-TAYLOR K, RYAN B, OSTEIKOETXEA X, et al. Oxidative and other posttranslational modifications in extracellular vesicle biology[J]. Semin Cell Dev Biol, 2015,40:8-16. |
[22] |
GERLACH J Q, KRUGER A, GALLOGLY S, et al. Surface glycosylation profiles of urine extracellular vesicles[J]. PLoS One, 2013, 8(9):e74801.
DOI URL |
[23] |
SARASWAT M, JOENVÄÄRA S, MUSANTE L, et al. N-linked(N-)glycoproteomics of urinary exosomes[J]. Mol Cell Proteomics, 2015, 14(2):263-276.
DOI URL |
[24] |
ZHANG J, QIN Y, JIANG Q, et al. Glycopattern alteration of glycoproteins in gastrointestinal cancer cell lines and their cell-derived exosomes[J]. J Proteome Res, 2022, 21(8):1876-1893.
DOI PMID |
[25] | MOREMEN K W, TIEMEYER M, NAIRN A V. Vertebrate protein glycosylation:diversity,synthesis and function[J]. Nat Rev Mol Cell Biol, 2012, 13(7):448-462. |
[26] |
PINHO S S, REIS C A. Glycosylation in cancer:mechanisms and clinical implications[J]. Nat Rev Cancer, 2015, 15(9):540-555.
DOI |
[27] |
NYALWIDHE J O, BETESH L R, POWERS T W, et al. Increased bisecting N-acetylglucosamine and decreased branched chain glycans of N-linked glycoproteins in expressed prostatic secretions associated with prostate cancer progression[J]. Proteomics Clin Appl, 2013, 7(9-10):677-689.
DOI URL |
[28] |
STAUBACH S, SCHADEWALDT P, WENDEL U, et al. Differential glycomics of epithelial membrane glycoproteins from urinary exovesicles reveals shifts toward complex-type N-glycosylation in classical galactosemia[J]. J Proteome Res, 2012, 11(2):906-916.
DOI PMID |
[29] |
LI Y, ZHANG Y, QIU F, et al. Proteomic identification of exosomal LRG1:a potential urinary biomarker for detecting NSCLC[J]. Electrophoresis, 2011, 32(15):1976-1983.
DOI URL |
[30] | CHAIYAWAT P, WEERAPHAN C, NETSIRISAWAN P, et al. Elevated O-GlcNAcylation of extracellular vesicle proteins derived from metastatic colorectal cancer cells[J]. Cancer Genomics Proteomics, 2016, 13(5):387-398. |
[31] |
NIU L, SONG X, WANG N, et al. Tumor-derived exosomal proteins as diagnostic biomarkers in non-small cell lung cancer[J]. Cancer Sci, 2019, 110(1):433-442.
DOI URL |
[32] | CHOI H, JU S, KANG K, et al. Terminal fucosylation of haptoglobin in cancer-derived exosomes during cholangiocarcinoma progression[J]. Front Oncol, 2023,13:1183442. |
[33] |
PAN D, CHEN J, FENG C C, et al. Preferential localization of MUC1 glycoprotein in exosomes secreted by non-small cell lung carcinoma cells[J]. Int J Mol Sci, 2019, 20(2):323.
DOI URL |
[34] |
RUNZ S, KELLER S, RUPP C, et al. Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM[J]. Gynecol Oncol, 2007, 107(3):563-571.
PMID |
[35] |
GOMES J, GOMES-ALVES P, CARVALHO S B, et al. Extracellular vesicles from ovarian carcinoma cells display specific glycosignatures[J]. Biomolecules, 2015, 5(3):1741-1761.
DOI PMID |
[36] |
SAKAUE T, KOGA H, IWAMOTO H, et al. Glycosylation of ascites-derived exosomal CD133:a potential prognostic biomarker in patients with advanced pancreatic cancer[J]. Med Mol Morphol, 2019, 52(4):198-208.
DOI |
[37] |
JAFARI D, SHAJARI S, JAFARI R, et al. Designer exosomes:a new platform for biotechnology therapeutics[J]. BioDrugs, 2020, 34(5):567-586.
DOI |
[38] |
HUNG M E, LEONARD J N. Stabilization of exosome-targeting peptides via engineered glycosylation[J]. J Biol Chem, 2015, 290(13):8166-8172.
DOI PMID |
[39] | KOOIJMANS S A, ALEZA C G, ROFFLER S R, et al. Display of GPI-anchored anti-EGFR nanobodies on extracellular vesicles promotes tumour cell targeting[J]. J Extracell Vesicles, 2016,5 :31053. |
[40] |
AL-ABEDI R, TUNCAY CAGATAY S, MAYAH A, et al. Ionising radiation promotes invasive potential of breast cancer cells:the role of exosomes in the process[J]. Int J Mol Sci, 2021, 22(21):11570.
DOI URL |
[41] |
PALMA J, YADDANAPUDI S C, PIGATI L, et al. MicroRNAs are exported from malignant cells in customized particles[J]. Nucleic Acids Res, 2012, 40(18):9125-9138.
DOI PMID |
[42] | LOBB R J, BECKER M, WEN S W, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma[J]. J Extracell Vesicles, 2015,4:27031. |
[43] | MUSANTE L, TATARUCH D, GU D, et al. A simplified method to recover urinary vesicles for clinical applications,and sample banking[J]. Sci Rep, 2014,4:7532. |
[44] |
WENG Y, SUI Z, SHAN Y C, et al. Effective isolation of exosomes with polyethylene glycol from cell culture supernatant for in-depth proteome profiling[J]. Analyst, 2016, 141(15):4640-4646.
DOI PMID |
[45] |
DEREGIBUS M C, FIGLIOLINI F, D'ANTICO S, et al. Charge-based precipitation of extracellular vesicles[J]. Int J Mol Med, 2016, 38(5):1359-1366.
DOI PMID |
[46] |
KUBASKI F, OSAGO H, MASON R W, et al. Glycosaminoglycans detection methods:applications of mass spectrometry[J]. Mol Genet Metab, 2017, 120(1-2):67-77.
DOI URL |
[47] | HERRERO C, DE LA FUENTE A, CASAS-AROZAMENA C, et al. Extracellular vesicles-based biomarkers represent a promising liquid biopsy in endometrial cancer[J]. Cancers(Basel), 2019, 11(12):2000. |
[48] |
HERRERO C, FERREIRÓS A, PÉREZ-FENTES D, et al. Extracellular vesicles' genetic cargo as noninvasive biomarkers in cancer:a pilot study using ExoGAG technology[J]. Biomedicines, 2023, 11(2):404.
DOI URL |
[49] |
SIDHOM K, OBI P O, SALEEM A. A review of exosomal isolation methods:is size exclusion chromatography the best option?[J]. Int J Mol Sci, 2020, 21(18):6466.
DOI URL |
[50] | THÉRY C, AMIGORENA S, RAPOSO G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids[J]. Curr Protoc Cell Biol, 2006, Chapter 3:Unit 3. 22. |
[51] | YAMAMOTO M, HARADA Y, SUZUKI T, et al. Application of high-mannose-type glycan-specific lectin from Oscillatoria agardhii for affinity isolation of tumor-derived extracellular vesicles[J]. Anal Biochem, 2019,580:21-29. |
[52] |
ISLAM M K, SYED P, LEHTINEN L, et al. A nanoparticle-based approach for the detection of extracellular vesicles[J]. Sci Rep, 2019, 9(1):1-9.
DOI |
[53] |
KANAO E, WADA S, NISHIDA H, et al. Classification of extracellular vesicles based on surface glycan structures by spongy-like separation media[J]. Anal Chem, 2022, 94(51):18025-18033.
DOI PMID |
[54] | CHOI Y, PARK U, KOO H J, et al. Exosome-mediated diagnosis of pancreatic cancer using lectin-conjugated nanoparticles bound to selective glycans[J]. Biosens Bioelectron, 2021,177:112980. |
[55] | KOH Y Q, ALMUGHLLIQ F B, VASWANI K, et al. Exosome enrichment by ultracentrifugation and size exclusion chromatography[J]. Front Biosci(Landmark Ed), 2018,23:865-874. |
[56] | JEPPESEN D K, HVAM M L, PRIMDAHL-BENGTSON B, et al. Comparative analysis of discrete exosome fractions obtained by differential centrifugation[J]. J Extracell Vesicles, 2014,3:25011. |
[57] | MOMEN-HERAVI F. Isolation of extracellular vesicles by ultracentrifugation[J]. Methods Mol Biol, 2017,1660:25-32. |
[58] |
FREITAS D, BALMAÑA M, POÇAS J, et al. Different isolation approaches lead to diverse glycosylated extracellular vesicle populations[J]. J Extracell Vesicles, 2019, 8(1):1621131.
DOI URL |
[59] | CHERUVANKY A, ZHOU H, PISITKUN T, et al. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator[J]. Am J Physiol Renal Physiol, 2007, 292(5):F1657-F1661. |
[60] | KOLIHA N, WIENCEK Y, HEIDER U, et al. A novel multiplex bead-based platform highlights the diversity of extracellular vesicles[J]. J Extracell Vesicles, 2016,5:29975. |
[61] | GERLACH J Q, MAGUIRE C M, KRÜGER A, et al. Urinary nanovesicles captured by lectins or antibodies demonstrate variations in size and surface glycosylation profile[J]. Nanomedicine(Lond), 2017, 12(11):1217-1229. |
[1] | 张晗, 郭林, 卢仁泉, 陈福祥. 肿瘤患者外周血免疫指标的临床价值与展望[J]. 检验医学, 2024, 39(4): 311-316. |
[2] | 张珩, 郑慧, 卢仁泉. 卵巢癌微环境调控调节性T细胞的研究进展[J]. 检验医学, 2024, 39(4): 317-323. |
[3] | 李月, 滕小艳, 丁思颖, 胡刘平, 杜玉珍. NLR对不同类型实体肿瘤远隔转移的预测价值[J]. 检验医学, 2024, 39(4): 324-329. |
[4] | 严天晴, 杨小香, 郭林, 卢仁泉. 血清细胞因子检测在卵巢上皮性肿瘤进展评估中的价值[J]. 检验医学, 2024, 39(4): 336-342. |
[5] | 许耘川, 皇甫昱婵, 马妍慧. 结直肠癌组织高表达IL-35对Th1和Th17可塑性的作用[J]. 检验医学, 2024, 39(4): 343-350. |
[6] | 杨静, 刘华朋, 柳旎. 血清MyD88和TRAF-6联合检测在儿童重度急性呼吸道感染诊断和预后评估中的价值[J]. 检验医学, 2024, 39(3): 237-242. |
[7] | 刘亚楠, 夏敏, 王欢, 郑月, 张泓. 3例儿童母细胞性浆细胞样树突细胞肿瘤临床特征和免疫表型分析[J]. 检验医学, 2024, 39(3): 302-306. |
[8] | 赖媛媛, 何振业, 沈化清, 林一腾, 刘熙君, 齐军, 林勇平. 凝血酶-抗凝血酶复合物、纤溶酶-α2-纤溶酶抑制剂复合物和血栓弹力图评估肿瘤患者凝血功能的价值[J]. 检验医学, 2024, 39(1): 43-46. |
[9] | 周韵斓, 沈立松. 液体活检标志物在非小细胞肺癌中的临床应用和挑战[J]. 检验医学, 2023, 38(9): 807-811. |
[10] | 王杨淑怡, 叶威, 林志豪, 黄约诺, 方涛, 董晓亭. 肺腺癌焦亡相关特征模型的构建和验证[J]. 检验医学, 2023, 38(9): 833-841. |
[11] | 彭伟, 李运改, 许静, 刘华, 杨翠霞, 沈云岳. 血清炎症因子联合PSA、f-PSA可辅助诊断前列腺癌[J]. 检验医学, 2023, 38(9): 849-854. |
[12] | 卫明珠, 潘继文, 罗锐, 陈俊辉. 凝血4项和肿瘤标志物对乙型肝炎相关肝癌的辅助诊断价值[J]. 检验医学, 2023, 38(9): 901-904. |
[13] | 丁肖媛, 戴劲盛, 焦荣红, 马素丽, 朱海峰, 吴梦雅, 车艳然, 张蕾. 肥胖/超重对哮喘发作期患儿Th1/Th2和Th17/Treg细胞因子的影响[J]. 检验医学, 2023, 38(8): 748-752. |
[14] | 孙泽朋, 王洪彬, 王建东, 宋德伟, 肖鹏. 心肌损伤多肽和蛋白类标志物方法学分析和进展[J]. 检验医学, 2023, 38(8): 784-789. |
[15] | 陈文举, 周勇, 徐佳佳, 王攀. 血清外泌体miR-23b-3p和miR-4429诊断HCC的价值[J]. 检验医学, 2023, 38(7): 624-628. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||