检验医学 ›› 2025, Vol. 40 ›› Issue (1): 8-14.DOI: 10.3969/j.issn.1673-8640.2025.01.002
收稿日期:
2024-05-14
修回日期:
2024-11-21
出版日期:
2025-01-30
发布日期:
2025-02-17
通讯作者:
李绵洋,E-mail:limianyang301@126.com。
作者简介:
王 驰,女,1990年生,博士,副主任医师,主要从事人工智能骨髓细胞形态学诊断研究。
WANG Chi, LIU Shaomei, LI Mianyang()
Received:
2024-05-14
Revised:
2024-11-21
Online:
2025-01-30
Published:
2025-02-17
摘要:
血液系统肿瘤的诊断需要综合考虑临床表现和骨髓细胞形态学、遗传学免疫表型相关检查检测结果,其中骨髓细胞形态学检查结果是部分血液系统疾病形态学诊断的“金标准”。随着组织图像分析和人工智能(AI)技术在临床的广泛应用,基于AI开发的自动图像处理系统在骨髓细胞形态学检查中表现出极大的优势,可以在提高形态学诊断效率和质量的同时大大降低人力成本,并进一步使检测结果具有一致性和可比性。文章综述AI在骨髓细胞形态学识别及其应用于血液系统疾病诊断的最新进展,并探讨AI在未来临床试验和血液系统肿瘤诊断中的重要价值,以及面临的挑战。
中图分类号:
王驰, 刘邵梅, 李绵洋. 基于人工智能技术的骨髓细胞形态学辅助诊断研究进展[J]. 检验医学, 2025, 40(1): 8-14.
WANG Chi, LIU Shaomei, LI Mianyang. Research progress on artificial intelligence in assisting diagnosis of bone marrow cell morphology[J]. Laboratory Medicine, 2025, 40(1): 8-14.
系统名称 | 公司 | 应用范围 |
---|---|---|
DCS-1600细胞医学图像分析仪、DSS-8200玻片扫描影像系统 | 深圳深析智能有限公司 | 利用计算机软件对涂片的细胞进行分类标记和分析,快速生成细胞形态和计数报告 |
Morphogo系统 | 杭州智微信息科技有限公司 | 对骨髓有核细胞进行图像采集、定位、预分类和数量统计,可通过内置模板形成图文报告 |
Aether AI Hema骨髓涂片数位形态分析软件 | 中国台湾云象科技公司 | 自动分类计数骨髓细胞,可在5 min之内完成判读,可识别15种骨髓血液细胞 |
Cellsee骨髓细胞形态分析仪 | 无锡瑄立智能科技有限公司 | 基于高倍镜下高清细胞图像,采用辅助图像识别算法计数骨髓和外周血样本中的各类细胞并分类,人工审核后修改内置模板,出具图文报告;部分医院已试用于浆膜腔积液、脑脊液图像识别等 |
表1 AI辅助骨髓细胞形态识别的仪器
系统名称 | 公司 | 应用范围 |
---|---|---|
DCS-1600细胞医学图像分析仪、DSS-8200玻片扫描影像系统 | 深圳深析智能有限公司 | 利用计算机软件对涂片的细胞进行分类标记和分析,快速生成细胞形态和计数报告 |
Morphogo系统 | 杭州智微信息科技有限公司 | 对骨髓有核细胞进行图像采集、定位、预分类和数量统计,可通过内置模板形成图文报告 |
Aether AI Hema骨髓涂片数位形态分析软件 | 中国台湾云象科技公司 | 自动分类计数骨髓细胞,可在5 min之内完成判读,可识别15种骨髓血液细胞 |
Cellsee骨髓细胞形态分析仪 | 无锡瑄立智能科技有限公司 | 基于高倍镜下高清细胞图像,采用辅助图像识别算法计数骨髓和外周血样本中的各类细胞并分类,人工审核后修改内置模板,出具图文报告;部分医院已试用于浆膜腔积液、脑脊液图像识别等 |
[1] | ALAGGIO R, AMADOR C, ANAGNOSTOPOULOS I, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours:lymphoid neoplasms[J]. Leukemia, 2022, 36(7):1720-1748. |
[2] | KHOURY J D, SOLARY E, ABLA O, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours:myeloid and histiocytic/dendritic neoplasms[J]. Leukemia, 2022, 36(7):1703-1719. |
[3] | 刘水清, 彭贤贵, 张杨. 《人工智能辅助血细胞形态学检查的技术要求及其临床应用中国专家共识(2024版)》解读[J]. 临床血液学杂志, 2024, 37(5):298-300. |
[4] | 刘贵建, 庞博. 应促进和拓展人工智能辅助血细胞形态学检查的临床应用[J]. 中华检验医学杂志, 2023, 46(3):231-237. |
[5] | 卢兴国. 血液病形态学检查和整合诊断思路[J]. 中华检验医学杂志, 2023, 46(3):238-242. |
[6] | 杨军霞, 连荷清, 庞博. 人工智能血细胞形态学检查的关键技术进展[J]. 中华检验医学杂志, 2023, 46(3):326-330. |
[7] | FU X, FU M, LI Q, et al. Morphogo:an automatic bone marrow cell classification system on digital images analyzed by artificial intelligence[J]. Acta Cytol, 2020, 64(6):588-596. |
[8] | VAN EEKELEN L, LITJENS G, HEBEDA K M. Artificial intelligence in bone marrow histological diagnostics:potential applications and challenges[J]. Pathobiology, 2024, 91(1):8-17. |
[9] | YASNITSKY L N. Artificial intelligence and medicine:history,current state,and forecasts for the future[J]. Curr Hypertens Rev, 2020, 16(3):210-215. |
[10] | SRINIDHI C L, CIGA O, MARTEL A L. Deep neural network models for computational histopathology:a survey[J]. Med Image Anal, 2021, 67:101813. |
[11] | BEN BARUCH S, ROTMAN-NATIV N, BARAM A, et al. Cancer-cell deep-learning classification by integrating quantitative-phase spatial and temporal fluctuations[J]. Cells, 2021, 10(12):3353. |
[12] |
李文静, 白静, 彭斌, 等. 图卷积神经网络及其在图像识别领域的应用综述[J]. 计算机工程与应用, 2023, 59(22):15-35.
DOI |
[13] | LEWIS J E, POZDNYAKOVA O. Digital assessment of peripheral blood and bone marrow aspirate smears[J]. Int J Lab Hematol, 2023, 45(2):50-58. |
[14] |
LV Z, CAO X, JIN X, et al. High-accuracy morphological identification of bone marrow cells using deep learning-based Morphogo system[J]. Sci Rep, 2023, 13(1):13364.
DOI PMID |
[15] | LIN Y, CHEN Q, CHEN T. Recent advancements in machine learning for bone marrow cell morphology analysis[J]. Front Med(Lausanne), 2024, 11:1402768. |
[16] |
ZHENG X, WANG Y, WANG G, et al. Fast and robust segmentation of white blood cell images by self-supervised learning[J]. Micron, 2018, 107:55-71.
DOI PMID |
[17] | TARIMO S A, JANG M A, NGASA E E, et al. WBC YOLO-ViT:2 Way - 2 stage white blood cell detection and classification with a combination of YOLOv5 and vision transformer[J]. Comput Biol Med, 2024, 169:107875. |
[18] | REHMAN A, ABBAS N, SABA T, et al. Classification of acute lymphoblastic leukemia using deep learning[J]. Microsc Res Tech, 2018, 81(11):1310-1317. |
[19] | HEGDE R B, PRASAD K, HEBBAR H, et al. Feature extraction using traditional image processing and convolutional neural network methods to classify white blood cells:a study[J]. Australas Phys Eng Sci Med, 2019, 42(2):627-638. |
[20] | NANAA A, AKKUS Z, LEE W Y, et al. Machine learning and augmented human intelligence use in histomorphology for haematolymphoid disorders[J]. Pathology, 2021, 53(3):400-407. |
[21] | CHOI J W, KU Y, YOO B W, et al. White blood cell differential count of maturation stages in bone marrow smear using dual-stage convolutional neural networks[J]. PLoS One, 2017, 12(12):e0189259. |
[22] |
MATEK C, KRAPPE S, MUNZENMAYER C, et al. Highly accurate differentiation of bone marrow cell morphologies using deep neural networks on a large image data set[J]. Blood, 2021, 138(20):1917-1927.
DOI PMID |
[23] | GLÜGE S, BALABANOV S, KOELZER V H, et al. Evaluation of deep learning training strategies for the classification of bone marrow cell images[J]. Comput Methods Programs Biomed, 2024, 243:107924. |
[24] |
NAKAMURA I, IDA H, YABUTA M, et al. Evaluation of two semi-supervised learning methods and their combination for automatic classification of bone marrow cells[J]. Sci Rep, 2022, 12(1):16736.
DOI PMID |
[25] | WANG D, HWANG M, JIANG W C, et al. A deep learning method for counting white blood cells in bone marrow images[J]. BMC Bioinformatics, 2021, 22(5):94. |
[26] | CHANDRADEVAN R, ALJUDI A A, DRUMHELLER B R, et al. Machine-based detection and classification for bone marrow aspirate differential counts:initial development focusing on nonneoplastic cells[J]. Lab Invest, 2020, 100(1):98-109. |
[27] |
LIU J, YUAN R, LI Y, et al. A deep learning method and device for bone marrow imaging cell detection[J]. Ann Transl Med, 2022, 10(4):208.
DOI PMID |
[28] | TAYEBI R M, MU Y, DEHKHARGHANIAN T, et al. Automated bone marrow cytology using deep learning to generate a histogram of cell types[J]. Commun Med (Lond), 2022, 2:45. |
[29] |
OUYANG N, WANG W, MA L, et al. Diagnosing acute promyelocytic leukemia by using convolutional neural network[J]. Clinica Chimica Acta, 2021, 512:1-6.
DOI PMID |
[30] | ECKARDT J N, SCHMITTMANN T, RIECHERT S, et al. Deep learning identifies acute promyelocytic leukemia in bone marrow smears[J]. BMC Cancer, 2022, 22(1):201. |
[31] | XIAO Y, HUANG Z, WU J, et al. Rapid screening of acute promyelocytic leukaemia in daily batch specimens:a novel artificial intelligence-enabled approach to bone marrow morphology[J]. Clin Transl Med, 2024, 14(7):e1783. |
[32] |
MANESCU P, NARAYANAN P, BENDKOWSKI C, et al. Detection of acute promyelocytic leukemia in peripheral blood and bone marrow with annotation-free deep learning[J]. Sci Rep, 2023, 13(1):2562.
DOI PMID |
[33] | REZAYI S, MOHAMMADZADEH N, BOURAGHI H, et al. Timely diagnosis of acute lymphoblastic leukemia using artificial intelligence-oriented deep learning methods[J]. Comput Intell Neurosci, 2021, 2021:5478157. |
[34] | ATTEIA G, ALHUSSAN A A, SAMEE N A. BO-ALLCNN:bayesian-based optimized CNN for acute lymphoblastic leukemia detection in microscopic blood smear images[J]. Sensors(Basel), 2022, 22(15):5520. |
[35] | SHAFIQUE S, TEHSIN S. Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks[J]. Technol Cancer Res Treat, 2018, 17:1533033818802789. |
[36] |
KIMURA K, TABE Y, AI T, et al. A novel automated image analysis system using deep convolutional neural networks can assist to differentiate MDS and AA[J]. Sci Rep, 2019, 9(1):13385.
DOI PMID |
[37] |
MORI J, KAJI S, KAWAI H, et al. Assessment of dysplasia in bone marrow smear with convolutional neural network[J]. Sci Rep, 2020, 10(1):14734.
DOI PMID |
[38] |
LEE N, JEONG S, PARK M J, et al. Deep learning application of the discrimination of bone marrow aspiration cells in patients with myelodysplastic syndromes[J]. Sci Rep, 2022, 12(1):18677.
DOI PMID |
[39] | ARBER D A, ORAZI A, HASSERJIAN R P, et al. International consensus classification of myeloid neoplasms and acute leukemias:integrating morphologic,clinical,and genomic data[J]. Blood, 2022, 140(11):1200-1228. |
[40] |
NAGATA Y, ZHAO R, AWADA H, et al. Machine learning demonstrates that somatic mutations imprint invariant morphologic features in myelodysplastic syndromes[J]. Blood, 2020, 136(20):2249-2262.
DOI PMID |
[41] | HUANG F, GUANG P, LI F, et al. AML,ALL,and CML classification and diagnosis based on bone marrow cell morphology combined with convolutional neural network:a STARD compliant diagnosis research[J]. Medicine(Baltimore), 2020, 99(45):e23154. |
[42] | YU Z, LI J, WEN X, et al. AMLnet,a deep-learning pipeline for the differential diagnosis of acute myeloid leukemia from bone marrow smears[J]. J Hematol Oncol, 2023, 16(1):27. |
[43] | AHMED N, YIGIT A, ISIK Z, et al. Identification of leukemia subtypes from microscopic images using convolutional neural network[J]. Diagnostics(Basel), 2019, 9(3):104. |
[44] | 杜忠华, 张福明, 吴波, 等. 人工智能技术Morphogo系统在骨髓细胞形态学检查的临床应用[J]. 中国实验诊断学, 2021, 25(7):958-961. |
[45] |
MOHLMAN J S, LEVENTHAL S D, HANSEN T, et al. Improving augmented human intelligence to distinguish burkitt lymphoma from diffuse large B-cell lymphoma cases[J]. Am J Clin Pathol, 2020, 153(6):743-759.
DOI PMID |
[46] | TANG G, FU X, WANG Z, et al. A machine learning tool using digital microscopy (Morphogo)for the identification of abnormal lymphocytes in the bone marrow[J]. Acta Cytol, 2021, 65(4):354-357. |
[47] | CHEN P, CHEN XU R, CHEN N, et al. Detection of metastatic tumor cells in the bone marrow aspirate smears by artificial intelligence (AI)-based Morphogo system[J]. Front Oncol, 2021, 11:742395. |
[48] | 刘思恒, 李佳, 杨武晨, 等. 人工智能识别骨髓细胞可应用于诊断急性白血病微小残留病[J]. 中华检验医学杂志, 2023, 46(3):280-285. |
[49] | 刘思恒, 李佳, 彭贤贵, 等. 探索Morphogo在多发性骨髓瘤MRD检测中的应用[J]. 重庆医科大学学报, 2022, 47(8):948-952. |
[50] | CHEN P, ZHANG L, CAO X, et al. Detection of circulating plasma cells in peripheral blood using deep learning‐based morphological analysis[J]. Cancer, 2024, 130(10):1884-1893. |
[51] | BRÜCK O E, LALLUKKA-BRÜCK S E, HOHTARI H R, et al. Machine learning of bone marrow histopathology identifies genetic and clinical determinants in patients with MDS[J]. Blood Cancer Discov, 2021, 2(3):238-249. |
[52] | XING Y, LIU X, DAI J, et al. Artificial intelligence of digital morphology analyzers improves the efficiency of manual leukocyte differentiation of peripheral blood[J]. BMC Med Inform Decis Mak, 2023, 23(1):50. |
[1] | 张岚, 朱建锋, 潘柏申, 陈朴, 王蓓丽, 郭玮. 循环浆细胞传统形态学检测对多发性骨髓瘤初诊患者预后的临床意义[J]. 检验医学, 2025, 40(1): 15-19. |
[2] | 沈希敏, 张雷, 权衡, 牛紫光, 夏冬歌, 张如霖. 血清lncRNA NEAT1在多发性骨髓瘤患者肾损伤的临床应用价值分析[J]. 检验医学, 2025, 40(1): 32-36. |
[3] | 周丽君, 于婷, 王能勇. 骨髓增生异常综合征合并肥大细胞白血病1例报道[J]. 检验医学, 2025, 40(1): 37-40. |
[4] | 马丽媛, 于小汇, 张宁宇. 多发性骨髓瘤手术治疗患者外周血细胞积分和IL-32与预后的关系[J]. 检验医学, 2024, 39(5): 458-463. |
[5] | 王丽霞, 陈仪, 潘园园, 任方刚, 张耀方, 王宏伟, 徐智芳. 骨髓增生异常综合征进展为急性双系列白血病罕见病例报道和临床特征分析[J]. 检验医学, 2024, 39(1): 100-102. |
[6] | 蒋浩琴, 徐倩倩, 徐黎明, 关明. 临床血液体液检验同质化管理和实践[J]. 检验医学, 2024, 39(1): 95-99. |
[7] | 俞琪, 王砚春, 郭林, 卢仁泉. 粒子放疗对前列腺癌患者骨髓、肝和肾功能的影响[J]. 检验医学, 2023, 38(5): 430-434. |
[8] | 柴国静, 南英博, 赵海利, 马香书, 赵鹏, 李金丫. PML/RARɑ阳性APL缓解后继发PML/RARɑ阴性AML 1例报道[J]. 检验医学, 2023, 38(11): 1106-1108. |
[9] | 丁静, 刘伟玲, 夏新新, 蔺丽慧. 骨髓增生异常综合征患者异基因造血干细胞移植后继发慢性肥大细胞白血病现象分析[J]. 检验医学, 2023, 38(10): 971-976. |
[10] | 井杰, 王蓓蕾, 刘善荣. 可解释人工智能在疾病诊疗中的应用[J]. 检验医学, 2021, 36(9): 976-980. |
[11] | 王洪玲, 李莉, 张春玲, 蔺丽慧, 丁静, 李会丹, 魏道林, 白萍. 浆细胞胞浆含明显颗粒κ轻链型多发性骨髓瘤临床回顾分析[J]. 检验医学, 2021, 36(8): 818-822. |
[12] | 蔡祺, 陈骊婷, 郭平, 林瀚, 万颖蕾. 外周血白细胞形态学参数在甲型、乙型流行性感冒诊断中的应用[J]. 检验医学, 2021, 36(6): 586-589. |
[13] | 姜含芳, 唐根, 陈虹宇, 朱纯青, 孟青, 唐盛平, 陈运生. 血清型33F肺炎链球菌致右侧肱骨近端急性化脓性骨髓炎并关节炎1例报道[J]. 检验医学, 2021, 36(6): 682-684. |
[14] | 李斌, 赵冬, 黄蓉, 郭娟荪. 骨髓血管内皮生长因子水平在弥漫性大B细胞淋巴瘤疗效监测中的价值[J]. 检验医学, 2021, 36(5): 480-485. |
[15] | 刘超群, 韩东, 徐健. 80例胃癌患者腹水常规细胞形态学检查分析[J]. 检验医学, 2021, 36(5): 517-518. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||