[1] |
ZHAO Y, YE L, ZHAO F, et al. Cryptococcus neoformans,a global threat to human health[J]. Infect Dis Poverty, 2023, 12(1):20.
|
[2] |
IYER K R, REVIE N M, FU C, et al. Treatment strategies for cryptococcal infection:challenges,advances and future outlook[J]. Nat Rev Microbiol, 2021, 19(7):454-466.
|
[3] |
FISHER M C, HAWKINS N J, SANGLARD D, et al. Worldwide emergence of resistance to antifungal drugs challenges human health and food security[J]. Science, 2018, 360(6390):739-742.
DOI
PMID
|
[4] |
World Health Organization(WHO). WHO fungal priority pathogens list to guide research,development and public health action[EB/OL].(2022-10-25)[2023-12-31]. https://www.who.int/publications/i/item/9789240060241.
|
[5] |
PERFECT J R, DISMUKES W E, DROMER F, et al. Clinical practice guidelines for the management of cryptococcal disease:2010 update by the infectious diseases society of America[J]. Clin Infect Dis, 2010, 50(3):291-322.
|
[6] |
CHEN L, ZHANG L, XIE Y, et al. Confronting antifungal resistance,tolerance,and persistence:advances in drug target discovery and delivery systems[J]. Adv Drug Deliv Rev, 2023,200:115007.
|
[7] |
BERMAN J, KRYSAN D J. Drug resistance and tolerance in fungi[J]. Nat Rev Microbiol, 2020, 18(9):539.
|
[8] |
YANG J H, HUANG P Y, CHENG C W, et al. Antifungal susceptibility testing with YeastONE™ is not predictive of clinical outcomes of Cryptococcus neoformans var. grubii fungemia[J]. Med Mycol, 2021, 59(11):1114-1121.
|
[9] |
Clinical and Laboratory Standards Institute. Epidemiological cutoff values for antifungal susceptibility testing[S]. M57S,CLSI, 2022.
|
[10] |
European Committee on Antimicrobial Susceptibility Testing. Overview of antifungal ECOFFs and clinical breakpoints for yeasts,moulds and dermatophytes using the EUCAST E.Def 7.4,E.Def 9.4 and E.Def 11.0 procedures[S]. EUCAST, 2023.
|
[11] |
范欣, 肖盟, 王贺, 等. 新型隐球菌显色微量肉汤稀释法药敏流行病学折点的建立[J]. 中华医院感染学杂志, 2016, 26(10):2215-2218.
|
[12] |
樊红丽, 高丽, 杨翠先, 等. 云南省新型隐球菌药物敏感流行病学折点的建立[J]. 重庆医学, 2019, 48(18):3188-3190.
|
[13] |
ARENDRUP M C, PATTERSON T F. Multidrug-resistant Candida:epidemiology,molecular mechanisms,and treatment[J]. J Infect Dis, 2017, 216(suppl 3):S445-S451.
|
[14] |
THOMPSON J R, DOUGLAS C M, LI W, et al. A glucan synthase FKS1 homolog in Cryptococcus neoformans is single copy and encodes an essential function[J]. J Bacteriol, 1999, 181(2):444-453.
|
[15] |
ROBBINS N, CAPLAN T, COWEN L E. Molecular evolution of antifungal drug resistance[J]. Annu Rev Microbiol, 2017,71:753-775.
|
[16] |
RODERO L, MELLADO E, RODRIGUEZ A C, et al. G484S amino acid substitution in lanosterol 14-alpha demethylase(ERG11) is related to fluconazole resistance in a recurrent Cryptococcus neoformans clinical isolate[J]. Antimicrob Agents Chemother, 2003, 47(11):3653-3656.
|
[17] |
SIONOV E, CHANG Y C, GARRAFFO H M, et al. Identification of a Cryptococcus neoformans cytochrome P450 lanosterol 14α-demethylase(Erg11)residue critical for differential susceptibility between fluconazole/voriconazole and itraconazole/posaconazole[J]. Antimicrob Agents Chemother, 2012, 56(3):1162-1169.
|
[18] |
ATIM P B, MEYA D B, GERLACH E S, et al. Lack of association between fluconazole susceptibility and ERG11 nucleotide polymorphisms in Cryptococcus neoformans clinical isolates from Uganda[J]. J Fungi(Basel), 2022, 8(5):508.
|
[19] |
SELB R, FUCHS V, GRAF B, et al. Molecular typing and in vitro resistance of Cryptococcus neoformans clinical isolates obtained in Germany between 2011 and 2017[J]. Int J Med Microbiol, 2019, 309(6):151336.
|
[20] |
KELLY S L, LAMB D C, TAYLOR M, et al. Resistance to amphotericin B associated with defective sterol delta 8-->7 isomerase in a Cryptococcus neoformans strain from an AIDS patient[J]. FEMS Microbiol Lett, 1994, 122(1-2):39-42.
|
[21] |
LOYSE A, DROMER F, DAY J, et al. Flucytosine and cryptococcosis:time to urgently address the worldwide accessibility of a 50-year-old antifungal[J]. J Antimicrob Chemother, 2013, 68(11):2435-2444.
|
[22] |
HOPE W W, TABERNERO L, DENNING D W, et al. Molecular mechanisms of primary resistance to flucytosine in Candida albicans[J]. Antimicrob Agents Chemother, 2004, 48(11):4377-4386.
|
[23] |
BILLMYRE R B, APPLEN CLANCEY S, LI L X, et al. 5-Fluorocytosine resistance is associated with hypermutation and alterations in capsule biosynthesis in Cryptococcus[J]. Nat Commun, 2020, 11(1):127.
|
[24] |
CHANG Y C, LAMICHHANE A K, CAI H, et al. Moderate levels of 5-fluorocytosine cause the emergence of high frequency resistance in Cryptococci[J]. Nat Commun, 2021, 12(1):3418.
|
[25] |
FISHER M C, ALASTRUEY-IZQUIERDO A, BERMAN J, et al. Tackling the emerging threat of antifungal resistance to human health[J]. Nat Rev Microbiol, 2022, 20(9):557-571.
DOI
PMID
|
[26] |
GUSA A, WILLIAMS J D, CHO J E, et al. Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro[J]. Proc Natl Acad Sci U S A, 2020, 117(18):9973-9980.
|
[27] |
BOYCE K J, WANG Y, VERMA S, et al. Mismatch repair of DNA replication errors contributes to microevolution in the pathogenic fungus Cryptococcus neoformans[J]. mBio, 2017, 8(3):e00595-17.
|
[28] |
POSTERARO B, SANGUINETTI M, SANGLARD D, et al. Identification and characterization of a Cryptococcus neoformans ATP binding cassette(ABC) transporter-encoding gene,CnAFR1,involved in the resistance to fluconazole[J]. Mol Microbiol, 2003, 47(2):357-371.
|
[29] |
CHANG M, SIONOV E, KHANAL LAMICHHANE A, et al. Roles of three Cryptococcus neoformans and Cryptococcus gattii efflux pump-coding genes in response to drug treatment[J]. Antimicrob Agents Chemother, 2018, 62(4):e01751-17.
|
[30] |
WHELAN W L. The genetic basis of resistance to 5-fluorocytosine in Candida species and Cryptococcus neoformans[J]. Crit Rev Microbiol, 1987, 15(1):45-56.
|
[31] |
CHANG Z, YADAV V, LEE S C, et al. Epigenetic mechanisms of drug resistance in fungi[J]. Fungal Genet Biol, 2019,132:103253.
|
[32] |
JANBON G, MAENG S, YANG D H, et al. Characterizing the role of RNA silencing components in Cryptococcus neoformans[J]. Fungal Genet Biol, 2010, 47(12):1070-1080.
|
[33] |
PRIEST S J, YADAV V, ROTH C, et al. Uncontrolled transposition following RNAi loss causes hypermutation and antifungal drug resistance in clinical isolates of Cryptococcus neoformans[J]. Nat Microbiol, 2022, 7(8):1239-1251.
|
[34] |
SHELEST E. Transcription factors in fungi[J]. FEMS Microbiol Lett, 2008, 286(2):145-151.
DOI
PMID
|
[35] |
SONG M H, LEE J W, KIM M S, et al. A flucytosine-responsive Mbp1/Swi4-like protein,Mbs1,plays pleiotropic roles in antifungal drug resistance,stress response,and virulence of Cryptococcus neoformans[J]. Eukaryot Cell, 2012, 11(1):53-67.
|
[36] |
CHUN C D, LIU O W, MADHANI H D. A link between virulence and homeostatic responses to hypoxia during infection by the human fungal pathogen Cryptococcus neoformans[J]. PLoS Pathog, 2007, 3(2):e22.
|
[37] |
CHANG Y C, BIEN C M, LEE H, et al. Sre1p,a regulator of oxygen sensing and sterol homeostasis,is required for virulence in Cryptococcus neoformans[J]. Mol Microbiol, 2007, 64(3):614-629.
|
[38] |
JUNG K W, YANG D H, MAENG S, et al. Systematic functional profiling of transcription factor networks in Cryptococcus neoformans[J]. Nat Commun, 2015,6:6757.
|
[39] |
PAUL S, DOERING T L, MOYE-ROWLEY W S. Cryptococcus neoformans Yap1 is required for normal fluconazole and oxidative stress resistance[J]. Fungal Genet Biol, 2015,74:1-9.
|
[40] |
SIONOV E, LEE H, CHANG Y C, et al. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes[J]. PLoS Pathog, 2010, 6(4):e1000848.
|
[41] |
NGAMSKULRUNGROJ P, CHANG Y, HANSEN B, et al. Characterization of the chromosome 4 genes that affect fluconazole-induced disomy formation in Cryptococcus neoformans[J]. PLoS One, 2012, 7(3):e33022.
|
[42] |
TSAI H J, NELLIAT A. A double-edged sword:aneuploidy is a prevalent strategy in fungal adaptation[J]. Genes(Basel), 2019, 10(10):787.
|
[43] |
ROSENBERG A, ENE I V, BIBI M, et al. Antifungal tolerance is a subpopulation effect distinct from resistance and is associated with persistent candidemia[J]. Nat Commun, 2018, 9(1):2470.
DOI
PMID
|
[44] |
BHATTACHARYA S, HOLOWKA T, ORNER E P, et al. Gene duplication associated with increased fluconazole tolerance in Candida auris cells of advanced generational age[J]. Sci Rep, 2019, 9(1):5052.
|
[45] |
KIM S H, IYER K R, PARDESHI L, et al. Genetic analysis of Candida auris implicates Hsp90 in morphogenesis and azole tolerance and Cdr1 in azole resistance[J]. mBio, 2019, 10(1):e02529-18.
|
[46] |
COWEN L E. Hsp90 orchestrates stress response signaling governing fungal drug resistance[J]. PLoS Pathog, 2009, 5(8):e1000471.
|
[47] |
LEVIN-REISMAN I, RONIN I, GEFEN O, et al. Antibiotic tolerance facilitates the evolution of resistance[J]. Science, 2017, 355(6327):826-830.
|