检验医学 ›› 2024, Vol. 39 ›› Issue (12): 1140-1144.DOI: 10.3969/j.issn.1673-8640.2024.12.002
收稿日期:2024-07-01
修回日期:2024-08-12
出版日期:2024-12-30
发布日期:2025-01-06
通讯作者:
吴文娟,E-mail:wwj1210@126.com。
作者简介:王子文,女,2001年生,学士,主要从事真菌耐药分子机制研究。
基金资助:Received:2024-07-01
Revised:2024-08-12
Online:2024-12-30
Published:2025-01-06
摘要:
新型隐球菌是全球分布的机会性真菌病原体,引起的隐球菌脑膜炎是获得性免疫缺陷综合征患者死亡的重要因素之一。目前,抗真菌治疗药物的种类有限,一定程度上加剧了新型隐球菌的耐药性和药物耐受性。在一些病例中,即使用体外药物敏感性试验结果提示敏感的药物进行治疗,病情依然迁延不愈或复发。这可能与药物耐受性有关。药物耐受性的发现,反映了更为复杂的抗真菌药物耐药机制。了解新型隐球菌耐药性和药物耐受性及其机制至关重要,可为制定临床治疗方案和开发新型抗真菌药物提供思路。
中图分类号:
王子文, 吴文娟. 新型隐球菌耐药性和药物耐受性检测及其机制研究进展[J]. 检验医学, 2024, 39(12): 1140-1144.
WANG Ziwen, WU Wenjuan. Research progress on determination and mechanism of drug resistance and tolerance to Cryptococcus neoformans[J]. Laboratory Medicine, 2024, 39(12): 1140-1144.
| [1] | ZHAO Y, YE L, ZHAO F, et al. Cryptococcus neoformans,a global threat to human health[J]. Infect Dis Poverty, 2023, 12(1):20. |
| [2] | IYER K R, REVIE N M, FU C, et al. Treatment strategies for cryptococcal infection:challenges,advances and future outlook[J]. Nat Rev Microbiol, 2021, 19(7):454-466. |
| [3] |
FISHER M C, HAWKINS N J, SANGLARD D, et al. Worldwide emergence of resistance to antifungal drugs challenges human health and food security[J]. Science, 2018, 360(6390):739-742.
DOI PMID |
| [4] | World Health Organization(WHO). WHO fungal priority pathogens list to guide research,development and public health action[EB/OL].(2022-10-25)[2023-12-31]. https://www.who.int/publications/i/item/9789240060241. |
| [5] | PERFECT J R, DISMUKES W E, DROMER F, et al. Clinical practice guidelines for the management of cryptococcal disease:2010 update by the infectious diseases society of America[J]. Clin Infect Dis, 2010, 50(3):291-322. |
| [6] | CHEN L, ZHANG L, XIE Y, et al. Confronting antifungal resistance,tolerance,and persistence:advances in drug target discovery and delivery systems[J]. Adv Drug Deliv Rev, 2023,200:115007. |
| [7] | BERMAN J, KRYSAN D J. Drug resistance and tolerance in fungi[J]. Nat Rev Microbiol, 2020, 18(9):539. |
| [8] | YANG J H, HUANG P Y, CHENG C W, et al. Antifungal susceptibility testing with YeastONE™ is not predictive of clinical outcomes of Cryptococcus neoformans var. grubii fungemia[J]. Med Mycol, 2021, 59(11):1114-1121. |
| [9] | Clinical and Laboratory Standards Institute. Epidemiological cutoff values for antifungal susceptibility testing[S]. M57S,CLSI, 2022. |
| [10] | European Committee on Antimicrobial Susceptibility Testing. Overview of antifungal ECOFFs and clinical breakpoints for yeasts,moulds and dermatophytes using the EUCAST E.Def 7.4,E.Def 9.4 and E.Def 11.0 procedures[S]. EUCAST, 2023. |
| [11] | 范欣, 肖盟, 王贺, 等. 新型隐球菌显色微量肉汤稀释法药敏流行病学折点的建立[J]. 中华医院感染学杂志, 2016, 26(10):2215-2218. |
| [12] | 樊红丽, 高丽, 杨翠先, 等. 云南省新型隐球菌药物敏感流行病学折点的建立[J]. 重庆医学, 2019, 48(18):3188-3190. |
| [13] | ARENDRUP M C, PATTERSON T F. Multidrug-resistant Candida:epidemiology,molecular mechanisms,and treatment[J]. J Infect Dis, 2017, 216(suppl 3):S445-S451. |
| [14] | THOMPSON J R, DOUGLAS C M, LI W, et al. A glucan synthase FKS1 homolog in Cryptococcus neoformans is single copy and encodes an essential function[J]. J Bacteriol, 1999, 181(2):444-453. |
| [15] | ROBBINS N, CAPLAN T, COWEN L E. Molecular evolution of antifungal drug resistance[J]. Annu Rev Microbiol, 2017,71:753-775. |
| [16] | RODERO L, MELLADO E, RODRIGUEZ A C, et al. G484S amino acid substitution in lanosterol 14-alpha demethylase(ERG11) is related to fluconazole resistance in a recurrent Cryptococcus neoformans clinical isolate[J]. Antimicrob Agents Chemother, 2003, 47(11):3653-3656. |
| [17] | SIONOV E, CHANG Y C, GARRAFFO H M, et al. Identification of a Cryptococcus neoformans cytochrome P450 lanosterol 14α-demethylase(Erg11)residue critical for differential susceptibility between fluconazole/voriconazole and itraconazole/posaconazole[J]. Antimicrob Agents Chemother, 2012, 56(3):1162-1169. |
| [18] | ATIM P B, MEYA D B, GERLACH E S, et al. Lack of association between fluconazole susceptibility and ERG11 nucleotide polymorphisms in Cryptococcus neoformans clinical isolates from Uganda[J]. J Fungi(Basel), 2022, 8(5):508. |
| [19] | SELB R, FUCHS V, GRAF B, et al. Molecular typing and in vitro resistance of Cryptococcus neoformans clinical isolates obtained in Germany between 2011 and 2017[J]. Int J Med Microbiol, 2019, 309(6):151336. |
| [20] | KELLY S L, LAMB D C, TAYLOR M, et al. Resistance to amphotericin B associated with defective sterol delta 8-->7 isomerase in a Cryptococcus neoformans strain from an AIDS patient[J]. FEMS Microbiol Lett, 1994, 122(1-2):39-42. |
| [21] | LOYSE A, DROMER F, DAY J, et al. Flucytosine and cryptococcosis:time to urgently address the worldwide accessibility of a 50-year-old antifungal[J]. J Antimicrob Chemother, 2013, 68(11):2435-2444. |
| [22] | HOPE W W, TABERNERO L, DENNING D W, et al. Molecular mechanisms of primary resistance to flucytosine in Candida albicans[J]. Antimicrob Agents Chemother, 2004, 48(11):4377-4386. |
| [23] | BILLMYRE R B, APPLEN CLANCEY S, LI L X, et al. 5-Fluorocytosine resistance is associated with hypermutation and alterations in capsule biosynthesis in Cryptococcus[J]. Nat Commun, 2020, 11(1):127. |
| [24] | CHANG Y C, LAMICHHANE A K, CAI H, et al. Moderate levels of 5-fluorocytosine cause the emergence of high frequency resistance in Cryptococci[J]. Nat Commun, 2021, 12(1):3418. |
| [25] |
FISHER M C, ALASTRUEY-IZQUIERDO A, BERMAN J, et al. Tackling the emerging threat of antifungal resistance to human health[J]. Nat Rev Microbiol, 2022, 20(9):557-571.
DOI PMID |
| [26] | GUSA A, WILLIAMS J D, CHO J E, et al. Transposon mobilization in the human fungal pathogen Cryptococcus is mutagenic during infection and promotes drug resistance in vitro[J]. Proc Natl Acad Sci U S A, 2020, 117(18):9973-9980. |
| [27] | BOYCE K J, WANG Y, VERMA S, et al. Mismatch repair of DNA replication errors contributes to microevolution in the pathogenic fungus Cryptococcus neoformans[J]. mBio, 2017, 8(3):e00595-17. |
| [28] | POSTERARO B, SANGUINETTI M, SANGLARD D, et al. Identification and characterization of a Cryptococcus neoformans ATP binding cassette(ABC) transporter-encoding gene,CnAFR1,involved in the resistance to fluconazole[J]. Mol Microbiol, 2003, 47(2):357-371. |
| [29] | CHANG M, SIONOV E, KHANAL LAMICHHANE A, et al. Roles of three Cryptococcus neoformans and Cryptococcus gattii efflux pump-coding genes in response to drug treatment[J]. Antimicrob Agents Chemother, 2018, 62(4):e01751-17. |
| [30] | WHELAN W L. The genetic basis of resistance to 5-fluorocytosine in Candida species and Cryptococcus neoformans[J]. Crit Rev Microbiol, 1987, 15(1):45-56. |
| [31] | CHANG Z, YADAV V, LEE S C, et al. Epigenetic mechanisms of drug resistance in fungi[J]. Fungal Genet Biol, 2019,132:103253. |
| [32] | JANBON G, MAENG S, YANG D H, et al. Characterizing the role of RNA silencing components in Cryptococcus neoformans[J]. Fungal Genet Biol, 2010, 47(12):1070-1080. |
| [33] | PRIEST S J, YADAV V, ROTH C, et al. Uncontrolled transposition following RNAi loss causes hypermutation and antifungal drug resistance in clinical isolates of Cryptococcus neoformans[J]. Nat Microbiol, 2022, 7(8):1239-1251. |
| [34] |
SHELEST E. Transcription factors in fungi[J]. FEMS Microbiol Lett, 2008, 286(2):145-151.
DOI PMID |
| [35] | SONG M H, LEE J W, KIM M S, et al. A flucytosine-responsive Mbp1/Swi4-like protein,Mbs1,plays pleiotropic roles in antifungal drug resistance,stress response,and virulence of Cryptococcus neoformans[J]. Eukaryot Cell, 2012, 11(1):53-67. |
| [36] | CHUN C D, LIU O W, MADHANI H D. A link between virulence and homeostatic responses to hypoxia during infection by the human fungal pathogen Cryptococcus neoformans[J]. PLoS Pathog, 2007, 3(2):e22. |
| [37] | CHANG Y C, BIEN C M, LEE H, et al. Sre1p,a regulator of oxygen sensing and sterol homeostasis,is required for virulence in Cryptococcus neoformans[J]. Mol Microbiol, 2007, 64(3):614-629. |
| [38] | JUNG K W, YANG D H, MAENG S, et al. Systematic functional profiling of transcription factor networks in Cryptococcus neoformans[J]. Nat Commun, 2015,6:6757. |
| [39] | PAUL S, DOERING T L, MOYE-ROWLEY W S. Cryptococcus neoformans Yap1 is required for normal fluconazole and oxidative stress resistance[J]. Fungal Genet Biol, 2015,74:1-9. |
| [40] | SIONOV E, LEE H, CHANG Y C, et al. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes[J]. PLoS Pathog, 2010, 6(4):e1000848. |
| [41] | NGAMSKULRUNGROJ P, CHANG Y, HANSEN B, et al. Characterization of the chromosome 4 genes that affect fluconazole-induced disomy formation in Cryptococcus neoformans[J]. PLoS One, 2012, 7(3):e33022. |
| [42] | TSAI H J, NELLIAT A. A double-edged sword:aneuploidy is a prevalent strategy in fungal adaptation[J]. Genes(Basel), 2019, 10(10):787. |
| [43] |
ROSENBERG A, ENE I V, BIBI M, et al. Antifungal tolerance is a subpopulation effect distinct from resistance and is associated with persistent candidemia[J]. Nat Commun, 2018, 9(1):2470.
DOI PMID |
| [44] | BHATTACHARYA S, HOLOWKA T, ORNER E P, et al. Gene duplication associated with increased fluconazole tolerance in Candida auris cells of advanced generational age[J]. Sci Rep, 2019, 9(1):5052. |
| [45] | KIM S H, IYER K R, PARDESHI L, et al. Genetic analysis of Candida auris implicates Hsp90 in morphogenesis and azole tolerance and Cdr1 in azole resistance[J]. mBio, 2019, 10(1):e02529-18. |
| [46] | COWEN L E. Hsp90 orchestrates stress response signaling governing fungal drug resistance[J]. PLoS Pathog, 2009, 5(8):e1000471. |
| [47] | LEVIN-REISMAN I, RONIN I, GEFEN O, et al. Antibiotic tolerance facilitates the evolution of resistance[J]. Science, 2017, 355(6327):826-830. |
| [1] | 郭超楠, 王妍妍, 张贝, 庞敬莹, 崔非非, 赵永新, 苏兵. 不同类型临床样本来源肺炎克雷伯菌耐药性和毒力分析[J]. 检验医学, 2024, 39(9): 880-887. |
| [2] | 王雅文, 张盈莹, 牛文彦. 糖化血红蛋白对2型糖尿病患者尿路感染病原菌的影响[J]. 检验医学, 2024, 39(9): 895-899. |
| [3] | 蔡旻, 张慧. 重症监护病房患者碳青霉烯耐药肠杆菌目细菌感染研究进展[J]. 检验医学, 2024, 39(9): 913-918. |
| [4] | 吴昕哲, 茆海丰, 杨晋, 左春磊, 金丹婷. MALDI-TOF MS直接靶板微滴生长测定法在CRKP快速检测中的应用[J]. 检验医学, 2024, 39(6): 587-591. |
| [5] | 孙苗丽, 吴琼, 王颖智, 王坚镪, 高锋, 汤瑾. 碳青霉烯耐药肺炎克雷伯菌检测和治疗研究进展[J]. 检验医学, 2024, 39(6): 615-620. |
| [6] | 王绪琴, 林倩茹, 冯琬清, 董原, 郁晓磊, 刘长河, 宁镇, 沈鑫, 潘启超, 林怡. HIV-1整合酶基因序列分析方法验证[J]. 检验医学, 2024, 39(4): 369-375. |
| [7] | 赵亚楠, 肖伟利, 曹啟新, 闫彦, 崔秀格, 赵建平. 围生期孕妇B族链球菌耐药性和血清型、基因型与妊娠结局的关系[J]. 检验医学, 2024, 39(4): 382-386. |
| [8] | 段雪寒, 吴华. MALDI-TOF MS技术在临床微生物检验中的应用[J]. 检验医学, 2024, 39(4): 410-414. |
| [9] | 陈宇, 赵雅, 王林. 慢性泪囊炎微生物分布及其耐药性[J]. 检验医学, 2024, 39(3): 256-259. |
| [10] | 陈寰, 董方, 吕志勇, 甄景慧, 陈梅, 苏建荣. 儿童侵袭性无乳链球菌血清型和耐药性分析[J]. 检验医学, 2024, 39(3): 260-264. |
| [11] | 马晨, 张祎, 李芳, 王静, 陈葳. 儿童侵袭性肺炎链球菌病伴坏死性肺炎临床特点、耐药性和预后不良相关因素分析[J]. 检验医学, 2024, 39(3): 265-271. |
| [12] | 李宁迪, 江渊. 耐药结核病实验室诊断技术研究进展[J]. 检验医学, 2024, 39(2): 203-208. |
| [13] | 吴泉明, 陈发林, 陈丽清, 陈东杰, 黄建刚, 陈喜军, 何鑫. 铜绿假单胞菌碳青霉烯类抗菌药物单纯耐药机制分析[J]. 检验医学, 2024, 39(12): 1234-1236. |
| [14] | 刘健, 徐辉, 杨勇琼, 邓正波. 耐药肺结核患者血清miR-129-3p、miR-144-3p检测的临床价值[J]. 检验医学, 2024, 39(11): 1113-1117. |
| [15] | 吕葛, 董方, 吕志勇. 北京某儿童医院肺炎链球菌临床分离情况及其耐药性[J]. 检验医学, 2024, 39(11): 1122-1127. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
