[1] |
GIL E, NOURSADEGHI M, BROWN J S. Streptococcus pneumoniae interactions with the complement system[J]. Front Cell Infect Microbiol, 2022, 12:929483.
|
[2] |
RUDAN I, O'BRIEN K L, NAIR H, et al. Epidemiology and etiology of childhood pneumonia in 2010:estimates of incidence,severe morbidity,mortality,underlying risk factors and causative pathogens for 192 countries[J]. J Glob Health, 2013, 3(1):10401.
|
[3] |
KTARI S, BEN AYED N, BEN RBEH I, et al. Antibiotic resistance pattern,capsular types,and molecular characterization of invasive isolates of Streptococcus pneumoniae in the south of Tunisia from 2012 to 2018[J]. BMC Microbiol, 2023, 23(1):36.
|
[4] |
VON SPECHT M, GARCÍA GABARROT G, MOLLERACH M, et al. Resistance to β-lactams in Streptococcus pneumoniae[J]. Rev Argent Microbiol, 2021, 53(3):266-271.
DOI
PMID
|
[5] |
BIELICKI J A, STÖHR W, BARRATT S, et al. Effect of amoxicillin dose and treatment duration on the need for antibiotic re-treatment in children with community-acquired pneumonia:the CAP-IT randomized clinical trial[J]. JAMA, 2021, 326(17):1713-1724.
|
[6] |
SHARAN D, CARLSON E E. Expanded profiling of β-lactam selectivity for penicillin-binding proteins in Streptococcus pneumoniae D39[J]. Biol Chem, 2022, 403(4):433-443.
|
[7] |
Clinical and Laboratory Standards Institute. Performance standards foe antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals information supplement[S]. VET01S,CLSI, 2024.
|
[8] |
PHILLIPS E J, BIGLIARDI P, BIRCHER A J, et al. Controversies in drug allergy:testing for delayed reactions[J]. J Allergy Clin Immunol, 2019, 143(1):66-73.
|
[9] |
MICOLI F, ROMANO M R, CARBONI F, et al. Strengths and weaknesses of pneumococcal conjugate vaccines[J]. Glycoconj J, 2023, 40(2):135-148.
|
[10] |
赵晓姬, 党好, 张任飞, 等. 596株肺炎链球菌的感染分布特征及耐药性分析[J]. 海南医学, 2023, 34(3):398-400.
|
[11] |
张范华, 林军立, 鲍惠妙, 等. 肺炎链球菌pbp2B基因突变与β-内酰胺类抗生素耐药相关性的研究[J]. 中国卫生检验杂志, 2010, 20(6):1423-1425.
|
[12] |
GRISKAITIS M, FURUYA-KANAMORI L, ALLEL K, et al. β-Lactam-resistant Streptococcus pneumoniae dynamics following treatment:a dose-response meta-analysis[J]. Clin Infect Dis, 2022, 75(11):1962-1970.
|
[13] |
MOSADEGH M, HABIBI GHAHFAROKHI S, AHMADI A, et al. Identification and molecular characterization of penicillin-nonsusceptible Streptococcus pneumoniae isolates recovered from invasive infections in a pre-pneumococcal vaccine era[J]. J Clin Lab Anal, 2022, 36(8):e24566.
|
[14] |
PARK M, SUTHERLAND J B, RAFII F. β-Lactam resistance development affects binding of penicillin-binding proteins(PBPs)of Clostridium perfringens to the fluorescent penicillin,BOCILLIN FL[J]. Anaerobe, 2020, 62(4):102179.
|
[15] |
ZHANG C, JU Y, TANG N, et al. Systematic analysis of supervised machine learning as an effective approach to predicate β-lactam resistance phenotype in Streptococcus pneumoniae[J]. Brief Bioinform, 2020, 21(4):1347-1355.
DOI
PMID
|
[16] |
黄李丹, 杨美娟, 孙爱华, 等. 肺炎链球菌耐药分子机制的研究进展[J]. 中南医学科学杂志, 2021, 49(3):275-280.
|
[17] |
DIAWARA I, NAYME K, KATFY K, et al. Analysis of amino acid motif of penicillin-binding proteins 1a,2b,and 2x in invasive Streptococcus pneumoniae nonsusceptible to penicillin isolated from pediatric patients in Casablanca,Morocco[J]. BMC Res Notes, 2018, 11(1):632.
|
[18] |
ZHOU M, WANG L, WANG Z, et al. Molecular characterization of penicillin-binding protein2x,2b and 1a of Streptococcus pneumoniae causing invasive pneumococcal diseases in China:a multicenter study[J]. Front Microbiol, 2022, 13:838790.
|
[19] |
MARQUART M E. Pathogenicity and virulence of Streptococcus pneumoniae:cutting to the chase on proteases[J]. Virulence, 2021, 12(1):766-787.
|
[20] |
XIAO K, WANG X, YU H. Comparative studies of catalytic pathways for Streptococcus pneumoniae sialidases NanA,NanB and NanC[J]. Sci Rep, 2019, 9(1):2157.
|
[21] |
ALBUQUERQUE R C, MORENO A C R, DOS SANTOS S R, et al. Multiplex-PCR for diagnosis of bacterial meningitis[J]. Braz J Microbiol, 2019, 50(2):435-443.
DOI
PMID
|
[22] |
CAO S, DOU X, ZHANG X, et al. Streptococcus pneumoniae autolysin LytA inhibits ISG15 and ISGylation through decreasing bacterial DNA abnormally accumulated in the cytoplasm of macrophages[J]. Mol Immunol, 2021, 140(10):87-96.
|
[23] |
SUBRAMANIAN K, HENRIQUES-NORMARK B, NORMARK S. Emerging concepts in the pathogenesis of the Streptococcus pneumoniae:from nasopharyngeal colonizer to intracellular pathogen[J]. Cell Microbiol, 2019, 21(11):e13077.
|
[24] |
SHENG Q, HOU X, WANG N, et al. Corilagin:a novel antivirulence strategy to alleviate Streptococcus pneumoniae infection by diminishing pneumolysin oligomers[J]. Molecules, 2022, 27(16):5063.
|
[25] |
PARK S S, GONZALEZ-JUARBE N, MARTÍNEZ E, et al. Streptococcus pneumoniae binds to host lactate dehydrogenase via PspA and PspC to enhance virulence[J]. mBio, 2021, 12(3):e00673.
|
[26] |
SANZ J C, RÍOS E, RODRÍGUEZ-AVIAL I, et al. Identification of Streptococcus pneumoniae lytA,plyA and psaA genes in pleural fluid by multiplex real-time PCR[J]. Enferm Infecc Microbiol Clin(Engl Ed), 2018, 36(7):428-430.
|
[27] |
熊晓顺, 林祥芳, 张楠, 等. 肺炎链球菌毒力基因表达差异性及对大环内酯类耐药性分析[J]. 中华医院感染学杂志, 2020, 30(5):641-647.
|