检验医学 ›› 2022, Vol. 37 ›› Issue (4): 313-318.DOI: 10.3969/j.issn.1673-8640.2022.04.003
孙小丹1, 刘鷖雯2, 何怡青2, 杜艳2, 张国良2, 高锋1, 杨翠霞1()
收稿日期:
2021-11-29
修回日期:
2022-01-24
出版日期:
2022-04-30
发布日期:
2022-06-07
通讯作者:
杨翠霞
作者简介:
杨翠霞,E-mail: dr.steven@163.com。基金资助:
SUN Xiaodan1, LIU Yiwen2, HE Yiqing2, DU Yan2, ZHANG Guoliang2, GAO Feng1, YANG Cuixia1()
Received:
2021-11-29
Revised:
2022-01-24
Online:
2022-04-30
Published:
2022-06-07
Contact:
YANG Cuixia
摘要:
雌激素受体(ER)属于核受体超家族成员,其发挥生物学功能的方式主要是通过与雌激素结合,诱导下游靶基因转录,并招募一系列辅助调节因子,共同参与调控基因转录。ER不仅在生理条件下发挥促进性器官成熟、副性征发育以及维持性功能等作用,而且在肿瘤的发生、发展中亦发挥着重要的调节作用,如参与调控肿瘤细胞的生长、耐药、上皮-间质转化(EMT)及转移等。ER在骨肉瘤细胞中呈低水平表达,但发挥重要的调节作用,其表达水平或活性可有效改变雌激素/ER依赖的转录因子的表达,影响肿瘤的侵袭、转移、药物敏感性及生长特性等。文章主要就近年来ER在骨肉瘤发生、发展及治疗中的作用进行综述,以期为寻找骨肉瘤治疗的新方案提供思路。
中图分类号:
孙小丹, 刘鷖雯, 何怡青, 杜艳, 张国良, 高锋, 杨翠霞. 雌激素受体在骨肉瘤中的作用研究进展[J]. 检验医学, 2022, 37(4): 313-318.
SUN Xiaodan, LIU Yiwen, HE Yiqing, DU Yan, ZHANG Guoliang, GAO Feng, YANG Cuixia. Research progress on the role of estrogen receptor in osteosarcoma[J]. Laboratory Medicine, 2022, 37(4): 313-318.
项目 | 机制 | 功能 | 参考文献 |
---|---|---|---|
ERα | 通过碱性磷酸酶降低波形蛋白、MMP9的蛋白表达水平 | 抑制转移 | [ |
通过碱性磷酸酶抑制SOX2、OCT4、NANOG基因表达 | 减弱细胞干性 | [ | |
ERβ | 激活Wnt信号通路,降低MMP7、MMP9的表达水平 | 诱导凋亡 | [ |
激活NF-κB/BCL-2使自噬标志物LC3-Ⅱ表达增加 | 诱导自噬 | [ | |
抑制PI3K/Akt | 诱导凋亡 | [ | |
GPER | 介导snail的翻译后调控 | 抑制转移 | [ |
通过MAPK信号通路降低IL-6 mRNA的稳定性 | 抑制侵袭转移 | [ |
表1 ER在骨肉瘤进展中的机制
项目 | 机制 | 功能 | 参考文献 |
---|---|---|---|
ERα | 通过碱性磷酸酶降低波形蛋白、MMP9的蛋白表达水平 | 抑制转移 | [ |
通过碱性磷酸酶抑制SOX2、OCT4、NANOG基因表达 | 减弱细胞干性 | [ | |
ERβ | 激活Wnt信号通路,降低MMP7、MMP9的表达水平 | 诱导凋亡 | [ |
激活NF-κB/BCL-2使自噬标志物LC3-Ⅱ表达增加 | 诱导自噬 | [ | |
抑制PI3K/Akt | 诱导凋亡 | [ | |
GPER | 介导snail的翻译后调控 | 抑制转移 | [ |
通过MAPK信号通路降低IL-6 mRNA的稳定性 | 抑制侵袭转移 | [ |
[1] |
SMELAND S, BIELACK S S, WHE LAN J, et al. Survival and prognosis with osteosarcoma:outcomes in more than 2 000 patients in the EURAMOS-1(European and American Osteosarcoma Study) cohort[J]. Eur J Cancer, 2019, 109:36-50.
DOI URL |
[2] |
ISAKOFF M S, BIELACK S S, MELTZER P, et al. Osteosarcoma:current treatment and a collaborative pathway to success[J]. J Clin Oncol, 2015, 33(27):3029-3035.
DOI URL |
[3] |
SMRKE A, ANDERSON P M, GULIA A, et al. Future directions in the treatment of osteosarcoma[J]. Cells, 2021, 10(1):172.
DOI URL |
[4] | EATON B R, SCHWARZ R, VATNER R, et al. Osteosarcoma[J]. Pediatr Blood Cancer, 2021, 68(Suppl 2):e28352. |
[5] |
DAVIS L E, BOLEJACK V, RYAN C W, et al. Randomized double-blind phase Ⅱ study of regorafenib in patients with metastatic osteosarcoma[J]. J Clin Oncol, 2019, 37(16):1424-1431.
DOI URL |
[6] |
ALEXANDER J H, BINITIE O T, LETSON G D, et al. Osteosarcoma:an evolving understanding of a complex disease[J]. J Am Acad Orthop Surg, 2021, 29(20):e993-e1004.
DOI URL |
[7] |
BIELACK S S, KEMPF-BIELACK B, DELLING G, et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk:an analysis of 1 702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols[J]. J Clin Oncol, 2002, 20(3):776-790.
DOI URL |
[8] |
CERSOSIMO F, LONARDI S, BERNARDINI G, et al. Tumor-associated macrophages in osteosarcoma:from mechanisms to therapy[J]. Int J Mol Sci, 2020, 21(15):5207.
DOI URL |
[9] |
ROBERTS R D. Is estrogen the answer for osteosarcoma?[J]. Cancer Res, 2019, 79(6):1034-1035.
DOI URL |
[10] |
LILLO OSUNA M A, GARCIA-LOPEZ J, EL AYACHI I, et al. Activation of estrogen receptor alpha by decitabine inhibits osteosarcoma growth and metastasis[J]. Cancer Res, 2019, 79(6):1054-1068.
DOI URL |
[11] | FUENTES N, SILVEYRA P. Estrogen receptor signaling mechanisms[J]. Adv Protein Chem Struct Biol, 2019, 116:135-170. |
[12] |
HANKER A B, SUDHAN D R, ARTEAGA C L. Overcoming endocrine resistance in breast cancer[J]. Cancer Cell, 2020, 37(4):496-513.
DOI URL |
[13] |
ZHA Z, SU A, HUO S. Activation of GPER suppresses the malignancy of osteosarcoma cells via down regulation of IL-6 and IL-8[J]. Arch Biochem Biophys, 2018, 660:149-155.
DOI URL |
[14] |
HEWITT S C, KORACH K S. Estrogen receptors:new directions in the new millennium[J]. Endocr Rev, 2018, 39(5):664-675.
DOI URL |
[15] |
WANG Z, CHEN X, ZHAO Y, et al. G-protein-coupled estrogen receptor suppresses the migration of osteosarcoma cells via post-translational regulation of snail[J]. J Cancer Res Clin Oncol, 2019, 145(1):87-96.
DOI URL |
[16] |
YE Y, XIAO Y, WANG W, et al. ERalpha signaling through slug regulates E-cadherin and EMT[J]. Oncogene, 2010, 29(10):1451-1462.
DOI URL |
[17] |
RENOIR J M, MARSAUD V, LAZENNEC G. Estrogen receptor signaling as a target for novel breast cancer therapeutics[J]. Biochem Pharmacol, 2013, 85(4):449-465.
DOI URL |
[18] |
MONROE D G, SECRETO F J, SUBRAMANIAM M, et al. Estrogen receptor alpha and beta heterodimers exert unique effects on estrogen- and tamoxifen-dependent gene expression in human U2OS osteosarcoma cells[J]. Mol Endocrinol, 2005, 19(6):1555-1568.
DOI URL |
[19] | WU C, CHEN R, XU L, et al. Relationship between the expression of oestrogen receptor and progesterone receptor and 18F-FDG uptake in endometrial cancer[J]. Aging(Albany NY), 2020, 12(13):12921-12929. |
[20] | DEN BOON J A, PYEON D, WANG S S, et al. Molecular transitions from papillomavirus infection to cervical precancer and cancer:role of stromal estrogen receptor signaling[J]. Proc Natl Acad Sci U S A, 2015, 112(25):e3255-e3264. |
[21] |
ROY P, GEORGE J, SRIVASTAVA S, et al. Inhibitory effects of tea polyphenols by targeting cyclooxygenase-2 through regulation of nuclear factor kappa B,Akt and p53 in rat mammary tumors[J]. Invest New Drugs, 2011, 29(2):225-231.
DOI URL |
[22] |
SOBRINO A, VALLEJO S, NOVELLA S, et al. Mas receptor is involved in the estrogen-receptor induced nitric oxide-dependent vasorelaxation[J]. Biochem Pharmacol, 2017, 129:67-72.
DOI URL |
[23] |
MANSOURI S, FARAHMAND L, HOSSEINZADE A, et al. Estrogen can restore tamoxifen sensitivity in breast cancer cells amidst the complex network of resistance[J]. Biomed Pharmacother, 2017, 93:1320-1325.
DOI URL |
[24] |
SINGH R R, KUMAR R. Steroid hormone receptor signaling in tumorigenesis[J]. J Cell Biochem, 2005, 96(3):490-505.
DOI URL |
[25] |
WANG C, BAI F, ZHANG L H, et al. Estrogen promotes estrogen receptor negative BRCA1-deficient tumor initiation and progression[J]. Breast Cancer Res, 2018, 20(1):74.
DOI URL |
[26] |
YANG M, LIU B, JIN L, et al. Estrogen receptor β exhibited anti-tumor effects on osteosarcoma cells by regulating integrin,IAP,NF-kB/BCL-2 and PI3K/Akt signal pathway[J]. J Bone Oncol, 2017, 9:15-20.
DOI URL |
[27] |
YANG L, HE J, WEN Y, et al. Nanoscale photodynamic agents for colorectal cancer treatment:a review[J]. J Biomed Nanotechnol, 2016, 12(7):1348-1373.
DOI URL |
[28] |
ZHANG Y, YIN C, ZHOU X, et al. Silencing of estrogen receptor β promotes the invasion and migration of osteosarcoma cells through activating Wnt signaling pathway[J]. Onco Targets Ther, 2019, 12:6779-6788.
DOI URL |
[29] |
DE FRANCESCO E M, MAGGIOLINI M, MUSTI A M. Crosstalk between Notch,HIF-1α and GPER in breast cancer EMT[J]. Int J Mol Sci, 2018, 19(7):2011.
DOI URL |
[30] | HERNÁNDEZ-SILVA C D, VILLEGAS-PINEDA J C, PEREIRA-SUÁREZ A L. Expression and role of the G protein-coupled estrogen receptor(GPR30/GPER) in the development and immune response in female reproductive cancers[J]. Front Endocrinol(Lausanne), 2020, 11:544. |
[31] | ROUHIMOGHADAM M, LU A S, SALEM A K, et al. Therapeutic perspectives on the modulation of G-protein coupled estrogen receptor,GPER,function[J]. Front Endocrinol(Lausanne), 2020, 11:591217. |
[32] |
PUPO M, PISANO A, LAPPANO R, et al. Bisphenol A induces gene expression changes and proliferative effects through GPER in breast cancer cells and cancer-associated fibroblasts[J]. Environ Health Perspect, 2012, 120(8):1177-1782.
DOI URL |
[33] | ISHII T, WARABI E. Mechanism of rapid nuclear factor-E2-related factor 2(Nrf2) activation via membrane-associated estrogen receptors:roles of NADPH oxidase 1,neutral sphingomyelinase 2 and epidermal growth factor receptor(EGFR)[J]. Antioxidants(Basel), 2019, 8(3):69. |
[34] |
KANDA N, WATANABE S. 17Beta-estradiol inhibits oxidative stress-induced apoptosis in keratinocytes by promoting Bcl-2 expression[J]. J Invest Dermatol, 2003, 121(6):1500-1509.
DOI URL |
[35] |
YANG Z M, YANG M F, YU W, et al. Molecular mechanisms of estrogen receptor β-induced apoptosis and autophagy in tumors:implication for treating osteosarcoma[J]. J Int Med Res, 2019, 47(10):4644-4655.
DOI URL |
[36] |
HALL J M, MCDONNELL D P. The estrogen receptor beta-isoform(ERbeta) of the human estrogen receptor modulates ERalpha transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens[J]. Endocrinology, 1999, 140(12):5566-5578.
DOI URL |
[37] |
PARUTHIYIL S, PARMAR H, KEREKATTE V, et al. Estrogen receptor beta inhibits human breast cancer cell proliferation and tumor formation by causing a G2 cell cycle arrest[J]. Cancer Res, 2004, 64(1):423-428.
DOI URL |
[38] | 李洁. 植物雌激素大豆苷元对人骨肉瘤MG63细胞凋亡、分化和生物学性状的影响[D]. 郑州: 郑州大学, 2014. |
[39] |
YANG Z, YU W, LIU B, et al. Estrogen receptor β induces autophagy of osteosarcoma through the mTOR signaling pathway[J]. J Orthop Surg Res, 2020, 15(1):50.
DOI URL |
[40] | 牛晓辉, 蔡槱伯, 张清, 等. ⅡB期肢体骨肉瘤189例综合治疗临床分析[J]. 中华外科杂志, 2005, 55(24):1576-1579. |
[41] |
WANG L, JIANG Z, SUI M, et al. The potential biomarkers in predicting pathologic response of breast cancer to three different chemotherapy regimens:a case control study[J]. BMC Cancer, 2009, 9:226.
DOI URL |
[42] |
HOUTMAN R, DE LEEUW R, RONDAIJ M, et al. Serine-305 phosphorylation modulates estrogen receptor alpha binding to a coregulator peptide array,with potential application in predicting responses to tamoxifen[J]. Mol Cancer Ther, 2012, 11(4):805-816.
DOI URL |
[43] |
SUZUKI T, NISHIO K, TANABE S. The MRP family and anticancer drug metabolism[J]. Curr Drug Metab, 2001, 2(4):367-377.
DOI URL |
[44] |
DUAN L, PEREZ R E, HANSEN M, et al. Increasing cisplatin sensitivity by schedule-dependent inhibition of AKT and Chk1[J]. Cancer Biol Ther, 2014, 15(12):1600-1612.
DOI URL |
[45] |
BROZOVIC A, FRITZ G, CHRISTMANN M, et al. Long-term activation of SAPK/JNK,p38 kinase and fas-L expression by cisplatin is attenuated in human carcinoma cells that acquired drug resistance[J]. Int J Cancer, 2004, 112(6):974-985.
DOI URL |
[46] | GO R E, KIM C W, LEE S M, et al. Fenhexamid induces cancer growth and survival via estrogen receptor-dependent and PI3K-dependent pathways in breast cancer models[J]. Food Chem Toxicol, 2021, 149:112000. |
[47] | ALFAKEEH A, BREZDEN-MASLEY C. Overcoming endocrine resistance in hormone receptor-positive breast cancer[J]. Curr Oncol, 2018, 25(Suppl 1):S18-S27. |
[48] | WONG K Y, ZHOU L, YU W, et al. Water extract of Er-xian decoction selectively exerts estrogenic activities and interacts with SERMs in estrogen-sensitive tissues[J]. J Ethnopharmacol, 2021, 275:114096. |
[49] |
CRAIG JORDAN V, MCDANIEL R, AGBOKE F, et al. The evolution of nonsteroidal antiestrogens to become selective estrogen receptor modulators[J]. Steroids, 2014, 90:3-12.
DOI URL |
[50] |
ZHOU L P, WONG K Y, YEUNG H T, et al. Bone protective effects of Danggui Buxue Tang alone and in combination with tamoxifen or raloxifene in vivo and in vitro[J]. Front Pharmacol, 2018, 9:779.
DOI URL |
[51] |
WANG J Y, CHEN C M, CHEN C F, et al. Suppression of estrogen receptor alpha inhibits cell proliferation,differentiation and enhances the chemosensitivity of P53-positive U2OS osteosarcoma cell[J]. Int J Mol Sci, 2021, 22(20):11238.
DOI URL |
[1] | 王蓉, 邢连翔, 黄克亮, 李欣. miR-374靶向下调TRIM35表达可促进乳腺癌细胞增殖和侵袭[J]. 检验医学, 2023, 38(9): 812-817. |
[2] | 杨玉强, 全晓丽, 王刘玉, 鲜文峰, 杨红. 骨肉瘤组织RRBP1表达及其对细胞生物学特征的影响[J]. 检验医学, 2023, 38(9): 842-848. |
[3] | 缪星国, 叶慧, 苏菲菲. GeneXpert MTB/RIF检出量与结核分枝杆菌培养和利福平表型耐药的关系[J]. 检验医学, 2023, 38(9): 874-877. |
[4] | 王朝, 赵煜. 持留菌形成机制和清除策略研究进展[J]. 检验医学, 2023, 38(8): 790-795. |
[5] | 张旭明, 尹伟明, 高婧. 深圳市宝安地区妊娠期甲状腺功能减退患者UGT1A1基因多态性与妊娠期合并症和不良妊娠结局的关系[J]. 检验医学, 2023, 38(7): 665-668. |
[6] | 陈琛, 段奇, 陆佳团, 翟晓建, 王征, 张浩, 郭满. 三阴性乳腺癌患者ASH2L、HOXA2表达及其与淋巴转移的关系[J]. 检验医学, 2023, 38(6): 574-578. |
[7] | 张国良, 刘鷖雯, 何怡青, 许静, 杨翠霞, 高锋, 刘华. 乳腺癌患者血清HAS2、CD44水平变化及其临床意义[J]. 检验医学, 2023, 38(5): 424-429. |
[8] | 朱昱蓉, 张丹, 贺雅星, 李晶晶, 黄晶, 李婷, 刘鹏, 刘荣华. 肺炎克雷伯菌临床分离株分子分群和流行病学特征[J]. 检验医学, 2023, 38(5): 435-440. |
[9] | 马冬梅, 蒋东葵, 相晓波, 李世亮. 板蓝根等4种中药单用和与西药联用对广泛耐药鲍曼不动杆菌的抑菌作用[J]. 检验医学, 2023, 38(5): 441-445. |
[10] | 宋世伟, 李景武, 林韬, 刘泽宇, 王志强, 孙卫东. GPNMB与非小细胞肺癌患者肿瘤免疫浸润和预后的相关性[J]. 检验医学, 2023, 38(4): 347-351. |
[11] | 方咏梅, 章燕, 徐雪莹, 钟峰. 金黄色葡萄球菌耐药性与耐药基因和毒力基因的相关性[J]. 检验医学, 2023, 38(4): 357-361. |
[12] | 王佳玮, 朱威南, 陈颖盈, 季萍, 王颖. 血培养分离碳青霉烯类耐药肺炎克雷伯菌临床分布和耐药基因分析[J]. 检验医学, 2023, 38(4): 362-367. |
[13] | 邓劲, 刘雅, 吴思颖, 廖全凤, 张为利, 肖玉玲, 谢轶, 马莹, 康梅. 抗菌药物体外联合药物敏感性试验方法[J]. 检验医学, 2023, 38(4): 385-393. |
[14] | 张银龙, 杨红. 骨肉瘤组织长链非编码RNA ZFAS1的表达及其临床意义[J]. 检验医学, 2023, 38(3): 240-244. |
[15] | 任燕飞, 张敏, 杨涛, 李荣凯, 梁新. 呼吸重症科患者下呼吸道感染病原菌流行病学分析[J]. 检验医学, 2023, 38(2): 157-162. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||