检验医学 ›› 2023, Vol. 38 ›› Issue (8): 790-795.DOI: 10.3969/j.issn.1673-8640.2023.08.016
收稿日期:
2022-03-17
修回日期:
2022-11-28
出版日期:
2023-08-30
发布日期:
2023-10-30
通讯作者:
赵煜,E-mail:zhaoyu1617@126.com。
作者简介:
王朝,男,1988年生,硕士,助理研究员,主要从事病原微生物检验和致病机制研究。
基金资助:
Received:
2022-03-17
Revised:
2022-11-28
Online:
2023-08-30
Published:
2023-10-30
摘要:
持留菌虽然很早即被发现,但是在抗感染诊疗中较少被提及。随着抗菌药物耐药和抗药性问题的日益严重,相关研究不断深入。病原菌持留现象已被发现于大多数细菌,并被认为是导致慢性感染和疾病迁延不愈的重要原因。持留菌的形成机制涉及多种细胞生命过程,但具体机制目前尚不明确。近年来,临床针对持留菌的治疗策略已基本形成共识。文章对持留菌形成机制相关研究、临床应对策略进行综述,以期为解决慢性感染性疾病治疗中所面临的重大挑战有所帮助。
中图分类号:
王朝, 赵煜. 持留菌形成机制和清除策略研究进展[J]. 检验医学, 2023, 38(8): 790-795.
WANG Chao, ZHAO Yu. Research progress on formation mechanism and eradication strategy of bacterial persisters[J]. Laboratory Medicine, 2023, 38(8): 790-795.
名称 | 类型 | 作用机制 | 作用菌种 | 参考文献 |
---|---|---|---|---|
CD437和CD1530 | 合成类视黄醇 | 破坏脂质双层 | 耐甲氧西林金黄色葡萄球菌持留菌 | [ |
α/β嵌合多肽分子刷 | 宿主防御肽聚合物 模拟物 | 干扰细胞膜,增加ROS水平 | 耐甲氧西林金黄色葡萄球菌生物膜和持留菌 | [ |
万古霉素-D-八精氨酸 | 双功能抗菌药物-转运 蛋白偶联物 | 在分子转运蛋白的协助下,万古霉素阻止细胞壁组装,抑制胱硫氨酸γ裂解酶 | 耐甲氧西林金黄色葡萄球菌生物膜和持留菌 | [ |
NL1、NL2、NL3 | 小分子酶抑制剂 | 金黄色葡萄球菌持留菌和铜绿假单胞菌持留菌 | [ | |
SPI009 | 小分子化合物 | 广泛破坏生物膜,增强协同抗菌药物活性 | 铜绿假单胞菌持留菌 | [ |
N-芳基化NH125类似物1 | 膜活性双亲性化合物,季铵阳离子 | 引起细胞膜去极化,破坏脂质双层 | 耐甲氧西林金黄色葡萄球菌持留菌 | [ |
聚(乙酰,精氨酰)氨基葡萄糖 | 大分子阳离子含糖 聚合物 | 增加细胞膜通透性,引起细胞膜去极化 | 铜绿假单胞菌持留菌 | [ |
表1 部分尚在研究阶段的对持留菌有直接杀灭或抑制作用的药物
名称 | 类型 | 作用机制 | 作用菌种 | 参考文献 |
---|---|---|---|---|
CD437和CD1530 | 合成类视黄醇 | 破坏脂质双层 | 耐甲氧西林金黄色葡萄球菌持留菌 | [ |
α/β嵌合多肽分子刷 | 宿主防御肽聚合物 模拟物 | 干扰细胞膜,增加ROS水平 | 耐甲氧西林金黄色葡萄球菌生物膜和持留菌 | [ |
万古霉素-D-八精氨酸 | 双功能抗菌药物-转运 蛋白偶联物 | 在分子转运蛋白的协助下,万古霉素阻止细胞壁组装,抑制胱硫氨酸γ裂解酶 | 耐甲氧西林金黄色葡萄球菌生物膜和持留菌 | [ |
NL1、NL2、NL3 | 小分子酶抑制剂 | 金黄色葡萄球菌持留菌和铜绿假单胞菌持留菌 | [ | |
SPI009 | 小分子化合物 | 广泛破坏生物膜,增强协同抗菌药物活性 | 铜绿假单胞菌持留菌 | [ |
N-芳基化NH125类似物1 | 膜活性双亲性化合物,季铵阳离子 | 引起细胞膜去极化,破坏脂质双层 | 耐甲氧西林金黄色葡萄球菌持留菌 | [ |
聚(乙酰,精氨酰)氨基葡萄糖 | 大分子阳离子含糖 聚合物 | 增加细胞膜通透性,引起细胞膜去极化 | 铜绿假单胞菌持留菌 | [ |
[1] |
BALABAN N Q, HELAINE S, LEWIS K, et al. Definitions and guidelines for research on antibiotic persistence[J]. Nat Rev Microbiol, 2019, 17(7):441-448.
DOI PMID |
[2] | HUEMER M, MAIRPADY SHAMBAT S, BERGADA-PIJUAN J, et al. Molecular reprogramming and phenotype switching in Staphylococcus aureus lead to high antibiotic persistence and affect therapy success[J]. Proc Natl Acad Sci U S A, 2021, 118(7):e2014920118. |
[3] |
PEYRUSSON F, VARET H, NGUYEN T K, et al. Intracellular Staphylococcus aureus persisters upon antibiotic exposure[J]. Nat Commun, 2020, 11(1):2200.
DOI |
[4] |
WILMAERTS D, WINDELS E M, VERSTRAETEN N, et al. General mechanisms leading to persister formation and awakening[J]. Trends Genet, 2019, 35(6):401-411.
DOI PMID |
[5] |
BAKKEREN E, DIARD M, HARDT W D. Evolutionary causes and consequences of bacterial antibiotic persistence[J]. Nat Rev Microbiol, 2020, 18(9):479-490.
DOI PMID |
[6] |
HARMS A, BRODERSEN D E, MITARAI N, et al. Toxins,targets,and triggers:an overview of toxin-antitoxin biology[J]. Mol Cell, 2018, 70(5):768-784.
DOI URL |
[7] | TALWAR S, PANDEY M, SHARMA C, et al. Role of VapBC12 toxin-antitoxin locus in cholesterol-induced mycobacterial persistence[J]. mSystems, 2020, 5(6):e00855. |
[8] |
PINEL-MARIE M L, BRIELLE R, RIFFAUD C, et al. RNA antitoxin SprF1 binds ribosomes to attenuate translation and promote persister cell formation in Staphylococcus aureus[J]. Nat Microbiol, 2021, 6(2):209-220.
DOI |
[9] |
ZHOU J, LI S, LI H, et al. Identification of a toxin-antitoxin system that contributes to persister formation by reducing NAD in Pseudomonas aeruginosa[J]. Microorganisms, 2021, 9(4):753.
DOI URL |
[10] |
GERDES K, BÆRENTSEN R, BRODERSEN D E. Phylogeny reveals novel hipa-homologous kinase families and toxin-antitoxin gene organizations[J]. mBio, 2021, 12(3):e0105821.
DOI URL |
[11] |
CHOWDHURY N, KWAN B W, WOOD T K. Persistence increases in the absence of the alarmone guanosine tetraphosphate by reducing cell growth[J]. Sci Rep, 2016, 6:20519.
DOI PMID |
[12] | VÖLZING K G, BRYNILDSEN M P. Stationary-phase persisters to ofloxacin sustain DNA damage and require repair systems only during recovery[J]. mBio, 2015, 6(5):e00731. |
[13] |
LOBRITZ M A, BELENKY P, PORTER C B, et al. Antibiotic efficacy is linked to bacterial cellular respiration[J]. Proc Natl Acad Sci U S A, 2015, 112(27):8173-8180.
DOI URL |
[14] |
VOGWILL T, COMFORT A C, FURIÓ V, et al. Persistence and resistance as complementary bacterial adaptations to antibiotics[J]. J Evol Biol, 2016, 29(6):1223-1233.
DOI URL |
[15] |
VAN DEN BERGH B, FAUVART M, MICHIELS J. Formation,physiology,ecology,evolution and clinical importance of bacterial persisters[J]. FEMS Microbiol Rev, 2017, 41(3):219-251.
DOI URL |
[16] |
BROWNING A P, SHARP J A, MAPDER T, et al. Persistence as an optimal hedging strategy[J]. Biophys J, 2021, 120(1):133-142.
DOI PMID |
[17] | VAN DEN BERGH B, MICHIELS J E, MICHIELS J. Experimental evolution of Escherichia coli persister levels using cyclic antibiotic treatments[J]. Methods Mol Biol, 2016, 1333:131-143. |
[18] |
GHOSH A, BALTEKIN Ö, WÄNESKOG M, et al. Contact-dependent growth inhibition induces high levels of antibiotic-tolerant persister cells in clonal bacterial populations[J]. EMBO J, 2018, 37(9):e98026.
DOI URL |
[19] |
MURAWSKI A M, BRYNILDSEN M P. Ploidy is an important determinant of fluoroquinolone persister survival[J]. Curr Biol, 2021, 31(10):2039-2050.
DOI URL |
[20] |
XU Y, LIU S, ZHANG Y, et al. DNA adenine methylation is involved in persister formation in E.coli[J]. Microbiol Res, 2021, 246:126709.
DOI URL |
[21] |
KIM W, ZHU W, HENDRICKS G L, et al. A new class of synthetic retinoid antibiotics effective against bacterial persisters[J]. Nature, 2018, 556(7699):103-107.
DOI URL |
[22] |
XIAO X, ZHANG S, CHEN S, et al. An alpha/beta chimeric peptide molecular brush for eradicating MRSA biofilms and persister cells to mitigate antimicrobial resistance[J]. Biomater Sci, 2020, 8(24):6883-6889.
DOI URL |
[23] |
ANTONOPLIS A, ZANG X, HUTTNER M A, et al. A dual-function antibiotic-transporter conjugate exhibits superior activity in sterilizing MRSA biofilms and killing persister cells[J]. J Am Chem Soc, 2018, 140(47):16140-16151.
DOI PMID |
[24] |
SHATALIN K, NUTHANAKANTI A, KAUSHIK A, et al. Inhibitors of bacterial H2S biogenesis targeting antibiotic resistance and tolerance[J]. Science, 2021, 372(6547):1169-1175.
DOI URL |
[25] | LIEBENS V, DEFRAINE V, KNAPEN W, et al. Identification of 1-(( 2,4-dichlorophenethyl)amino)-3-phenoxypropan-2-ol,a novel antibacterial compound active against persisters of Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 2017, 61(9):e00836. |
[26] |
ABOUELHASSAN Y, BASAK A, YOUSAF H, et al. Identification of N-arylated NH125 analogues as rapid eradicating agents against MRSA persister cells and potent biofilm killers of Gram-positive pathogens[J]. Chembiochem, 2017, 18(4):352-357.
DOI PMID |
[27] |
ABOUELHASSAN Y, ZHANG P, DING Y, et al. Rapid kill assessment of an N-arylated NH125 analogue against drug-resistant microorganisms[J]. Medchemcomm, 2019, 10(5):712-716.
DOI URL |
[28] |
NARAYANASWAMY V P, KEAGY L L, DURIS K, et al. Novel glycopolymer eradicates antibiotic- and CCCP-induced persister cells in Pseudomonas aeruginosa[J]. Front Microbiol, 2018, 9:1724.
DOI URL |
[29] |
SIMONSON A W, UMSTEAD T M, LAWANPRASERT A, et al. Extracellular matrix-inspired inhalable aerogels for rapid clearance of pulmonary tuberculosis[J]. Biomaterials, 2021, 273:120848.
DOI URL |
[30] |
CHUNG E S, KO K S. Eradication of persister cells of Acinetobacter baumannii through combination of colistin and amikacin antibiotics[J]. J Antimicrob Chemother, 2019, 74(5):1277-1283.
DOI URL |
[31] |
BAEK M S, CHUNG E S, JUNG D S, et al. Effect of colistin-based antibiotic combinations on the eradication of persister cells in Pseudomonas aeruginosa[J]. J Antimicrob Chemother, 2020, 75(4):917-924.
DOI URL |
[32] |
ZHENG E J, STOKES J M, COLLINS J J. Eradicating bacterial persisters with combinations of strongly and weakly metabolism-dependent antibiotics[J]. Cell Chem Biol, 2020, 27(12):1544-1552.
DOI PMID |
[33] |
LU C H, SHIAU C W, CHANG Y C, et al. SC5005 dissipates the membrane potential to kill Staphylococcus aureus persisters without detectable resistance[J]. J Antimicrob Chemother, 2021, 76(8):2049-2056.
DOI URL |
[34] |
CRUZ-MUÑIZ M Y, LÓPEZ-JACOME L E, HERNÁNDEZ-DURÁN M, et al. Repurposing the anticancer drug mitomycin C for the treatment of persistent Acinetobacter baumannii infections[J]. Int J Antimicrob Agents, 2017, 49(1):88-92.
DOI URL |
[35] |
STOKES J M, YANG K, SWANSON K, et al. A deep learning approach to antibiotic discovery[J]. Cell, 2020, 180(4):688-702.
DOI PMID |
[36] |
DEFRAINE V, FAUVART M, MICHIELS J. Fighting bacterial persistence:current and emerging anti-persister strategies and therapeutics[J]. Drug Resist Updat, 2018, 38:12-26.
DOI URL |
[37] | MOK W W K, BRYNILDSEN M P. Timing of DNA damage responses impacts persistence to fluoroquinolones[J]. Proc Natl Acad Sci U S A, 2018, 115(27):E6301-E6309. |
[38] |
CHEVERTON A M, GOLLAN B, PRZYDACZ M, et al. A Salmonella toxin promotes persister formation through acetylation of tRNA[J]. Mol Cell, 2016, 63(1):86-96.
DOI URL |
[39] |
KIM J S, YAMASAKI R, SONG S, et al. Single cell observations show persister cells wake based on ribosome content[J]. Environ Microbiol, 2018, 20(6):2085-2098.
DOI URL |
[40] |
ALLEGRETTA G, MAURER C K, EBERHARD J, et al. In-depth profiling of MvfR-regulated small molecules in Pseudomonas aeruginosa after quorum sensing inhibitor treatment[J]. Front Microbiol, 2017, 8:924.
DOI URL |
[41] |
TKACHENKO A G, KASHEVAROVA N M, SIDOROV R Y, et al. A synthetic diterpene analogue inhibits mycobacterial persistence and biofilm formation by targeting(p)ppGpp synthetases[J]. Cell Chem Biol, 2021, 28(10):1420-1432.
DOI URL |
[42] |
LI T, YIN N, LIU H, et al. Novel inhibitors of toxin hipa reduce multidrug tolerant persisters[J]. ACS Med Chem Lett, 2016, 7(5):449-453.
DOI PMID |
[1] | 郭超楠, 王妍妍, 张贝, 庞敬莹, 崔非非, 赵永新, 苏兵. 不同类型临床样本来源肺炎克雷伯菌耐药性和毒力分析[J]. 检验医学, 2024, 39(9): 880-887. |
[2] | 王雅文, 张盈莹, 牛文彦. 糖化血红蛋白对2型糖尿病患者尿路感染病原菌的影响[J]. 检验医学, 2024, 39(9): 895-899. |
[3] | 蔡旻, 张慧. 重症监护病房患者碳青霉烯耐药肠杆菌目细菌感染研究进展[J]. 检验医学, 2024, 39(9): 913-918. |
[4] | 吴昕哲, 茆海丰, 杨晋, 左春磊, 金丹婷. MALDI-TOF MS直接靶板微滴生长测定法在CRKP快速检测中的应用[J]. 检验医学, 2024, 39(6): 587-591. |
[5] | 孙苗丽, 吴琼, 王颖智, 王坚镪, 高锋, 汤瑾. 碳青霉烯耐药肺炎克雷伯菌检测和治疗研究进展[J]. 检验医学, 2024, 39(6): 615-620. |
[6] | 王绪琴, 林倩茹, 冯琬清, 董原, 郁晓磊, 刘长河, 宁镇, 沈鑫, 潘启超, 林怡. HIV-1整合酶基因序列分析方法验证[J]. 检验医学, 2024, 39(4): 369-375. |
[7] | 赵亚楠, 肖伟利, 曹啟新, 闫彦, 崔秀格, 赵建平. 围生期孕妇B族链球菌耐药性和血清型、基因型与妊娠结局的关系[J]. 检验医学, 2024, 39(4): 382-386. |
[8] | 段雪寒, 吴华. MALDI-TOF MS技术在临床微生物检验中的应用[J]. 检验医学, 2024, 39(4): 410-414. |
[9] | 陈宇, 赵雅, 王林. 慢性泪囊炎微生物分布及其耐药性[J]. 检验医学, 2024, 39(3): 256-259. |
[10] | 陈寰, 董方, 吕志勇, 甄景慧, 陈梅, 苏建荣. 儿童侵袭性无乳链球菌血清型和耐药性分析[J]. 检验医学, 2024, 39(3): 260-264. |
[11] | 马晨, 张祎, 李芳, 王静, 陈葳. 儿童侵袭性肺炎链球菌病伴坏死性肺炎临床特点、耐药性和预后不良相关因素分析[J]. 检验医学, 2024, 39(3): 265-271. |
[12] | 李宁迪, 江渊. 耐药结核病实验室诊断技术研究进展[J]. 检验医学, 2024, 39(2): 203-208. |
[13] | 王子文, 吴文娟. 新型隐球菌耐药性和药物耐受性检测及其机制研究进展[J]. 检验医学, 2024, 39(12): 1140-1144. |
[14] | 吴泉明, 陈发林, 陈丽清, 陈东杰, 黄建刚, 陈喜军, 何鑫. 铜绿假单胞菌碳青霉烯类抗菌药物单纯耐药机制分析[J]. 检验医学, 2024, 39(12): 1234-1236. |
[15] | 刘健, 徐辉, 杨勇琼, 邓正波. 耐药肺结核患者血清miR-129-3p、miR-144-3p检测的临床价值[J]. 检验医学, 2024, 39(11): 1113-1117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||