[1] |
American Diabetes Association Professional Practice Committee. 2. Classification and diagnosis of diabetes:standards of medical care in diabetes-2022[J]. Diabetes Care, 2022, 45(1):S17-S38.
|
[2] |
KUMAR N P, FUKUTANI K F, SHRUTHI B S, et al. Persistent inflammation during anti-tuberculosis treatment with diabetes comorbidity[J]. Elife, 2019, 8:e46477.
|
[3] |
MARSHALL R J, ARMART P, HULME K D, et al. Glycemic variability in diabetes increases the severity of influenza[J]. mBio, 2020, 11(2):e02841-19.
|
[4] |
HU Y, SUN J, DAI Z, et al. Prevalence and severity of corona virus disease 2019(COVID-19):a systematic review and meta-analysis[J]. J Clin Virol, 2020, 127:104371.
|
[5] |
ZHOU F, YU T, DU R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan,China:a retrospective cohort study[J]. Lancet, 2020, 395(10229):1054-1062.
|
[6] |
REY-REÑONES C, BAENA-DÍEZ J M, AGUILAR-PALACIO I, et al. Type 2 diabetes mellitus and cancer:epidemiology,physiopathology and prevention[J]. Biomedicines, 2021, 9(10):1429.
|
[7] |
BLANK C U, HAINING W N, HELD W, et al. Defining 'T cell exhaustion'[J]. Nat Rev Immunol, 2019, 19(11):665-674.
DOI
PMID
|
[8] |
BOLDIZSÁR F, BERKI T, MISETA A, et al. Effect of hyperglycemia on the basal cytosolic free calcium level,calcium signal and tyrosine-phosphorylation in human T-cells[J]. Immunol Lett, 2002, 82(1-2):159-164.
|
[9] |
MARFELLA R,D'ONOFRIO N,SARDU C,et al. Does poor glycaemic control affect the immunogenicity of the COVID-19 vaccination in patients with type 2 diabetes:the CAVEAT study[J]. Diabetes Obes Metab, 2022, 24(1):160-165.
|
[10] |
ZELLE-RIESER C, THANGAVADIVEL S, BIEDERMANN R, et al. T cells in multiple myeloma display features of exhaustion and senescence at the tumor site[J]. J Hematol Oncol, 2016, 9(1):116.
|
[11] |
LIU Q, SUN Z, CHEN L. Memory T cells:strategies for optimizing tumor immunotherapy[J]. Protein Cell, 2020, 11(8):549-564.
|
[12] |
BAJNOK A, IVANOVA M, RIGÓ J Jr, et al. The distribution of activation markers and selectins on peripheral T lymphocytes in preeclampsia[J]. Mediators Inflamm, 2017, 2017:8045161.
|
[13] |
ELSAYED N A, ALEPPO G, ARODA V R, et al. 6. Glycemic targets:standards of care in diabetes-2023[J]. Diabetes Care, 2023, 46(Suppl 1):S97-S110.
|
[14] |
MALDONADO A, MUELLER Y M, THOMAS P, et al. Decreased effector memory CD45RA+ CD62L- CD8+ T cells and increased central memory CD45RA- CD62L+ CD8+ T cells in peripheral blood of rheumatoid arthritis patients[J]. Arthritis Res Ther, 2003, 5(2):R91-R96.
DOI
PMID
|
[15] |
ERLANDSSON M, TUAMEH M, NILSSON L, et al. POS1072 insulin inhibits activity of CD4+ T cells in rheumatoid arthritis[J]. Ann Rheum Dis, 2023, 82(1):858.
|
[16] |
BULUT F, EROL D, ELYAS H, et al. Protein tyrosine phosphatase non-receptor 22 gene C1858T polymorphism in patients with coexistent type 2 diabetes and Hashimoto's thyroiditis[J]. Balkan Med J, 2014, 31(1):37-42.
DOI
PMID
|
[17] |
DIEDISHEIM M, CARCARINO E, VANDIEDONCK C, et al. Regulation of inflammation in diabetes:from genetics to epigenomics evidence[J]. Mol Metab, 2020, 41:101041.
|
[18] |
CHINEN T, KANNAN A K, LEVINE A G, et al. An essential role for the IL-2 receptor in Treg cell function[J]. Nat Immunol, 2016, 17(11):1322-1333.
|
[19] |
ZENG C, SHI X, ZHANG B, et al. The imbalance of Th17/Th1/Tregs in patients with type 2 diabetes:relationship with metabolic factors and complications[J]. J Mol Med(Berl), 2012, 90(2):175-186.
|
[20] |
VALTIERRA-ALVARADO M A, CASTAÑEDA-DELGADO J E, LUGO-VILLARINO G, et al. Increased frequency of CD14+HLA-DR-/low cells in type 2 diabetes patients with poor glycemic control[J]. Hum Immunol, 2022, 83(11):789-795.
|
[21] |
MENGOS A E, GASTINEAU D A, GUSTAFSON M P. The CD14+HLA-DRlo/neg monocyte:an immunosuppressive phenotype that restrains responses to cancer immunotherapy[J]. Front Immunol, 2019, 10:1147.
|
[22] |
LI W, LIANG L, LIAO Q, et al. CD38:an important regulator of T cell function[J]. Biomed Pharmacother, 2022, 153:113395.
|
[23] |
GHOSH A, KHANAM A, RAY K, et al. CD38:an ecto-enzyme with functional diversity in T cells[J]. Front Immunol, 2023, 14:1146791.
|
[24] |
CHMIELEWSKI J P, BOWLBY S C, WHEELER F B, et al. CD38 inhibits prostate cancer metabolism and proliferation by reducing cellular NAD+ pools[J]. Mol Cancer Res, 2018, 16(11):1687-1700.
|
[25] |
NABAR N R, HEIJJER C N, SHI C S, et al. LRRK2 is required for CD38-mediated NAADP-Ca2+ signaling and the downstream activation of TFEB(transcription factor EB)in immune cells[J]. Autophagy, 2022, 18(1):204-222.
|
[26] |
XIONG J, XIA M, XU M, et al. Autophagy maturation associated with CD38-mediated regulation of lysosome function in mouse glomerular podocytes[J]. J Cell Mol Med, 2013, 17(12):1598-1607.
DOI
PMID
|
[27] |
BAO J X, ZHANG Q F, WANG M, et al. Implication of CD38 gene in autophagic degradation of collagenⅠin mouse coronary arterial myocytes[J]. Front Biosci(Landmark Ed), 2017, 22(4):558-569.
|
[28] |
BHARATH L P, AGRAWAL M, MCCAMBRIDGE G, et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation[J]. Cell Metab, 2020, 32(1):44-55.
DOI
PMID
|
[29] |
RIFFELMACHER T, RICHTER F C, SIMON A K. Autophagy dictates metabolism and differentiation of inflammatory immune cells[J]. Autophagy, 2018, 14(2):199-206.
DOI
PMID
|