[1] |
ARBER D A, ORAZI A, HASSERJIAN R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J]. Blood, 2016, 127(20):2391-2405.
DOI
PMID
|
[2] |
COUSTAN-SMITH E, MULLIGHAN C G, ONCIU M, et al. Early T-cell precursor leukaemia:a subtype of very high-risk acute lymphoblastic leukaemia[J]. Lancet Oncol, 2009, 10(2):147-156.
|
[3] |
CONTER V, VALSECCHI M G, BULDINI B, et al. Early T-cell precursor acute lymphoblastic leukaemia in children treated in AIEOP centres with AIEOP-BFM protocols:a retrospective analysis[J]. Lancet Haematol, 2016, 3(2):e80-6.
|
[4] |
JAIN N, LAMB A V,O'BRIEN S,et al. Early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL/LBL)in adolescents and adults:a high-risk subtype[J]. Blood, 2016, 127(15):1863-1869.
|
[5] |
NEUMANN M, COSKUN E, FRANSECKY L, et al. FLT3 mutations in early T-cell precursor ALL characterize a stem cell like leukemia and imply the clinical use of tyrosine kinase inhibitors[J]. PLoS One, 2013, 8(1):e53190.
|
[6] |
KOCH U, RADTKE F. Mechanisms of T cell development and transformation[J]. Annu Rev Cell Dev Biol, 2011, 27:539-562.
DOI
PMID
|
[7] |
公彦栋. 单细胞精度解析人类T淋巴细胞起源及胸腺器官发生[D]. 北京: 中国人民解放军军事科学院, 2020.
|
[8] |
LUC S, LUIS T C, BOUKARABILA H, et al. The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential[J]. Nat Immunol, 2012, 13(4):412-419.
DOI
PMID
|
[9] |
BELL J J, BHANDOOLA A. The earliest thymic progenitors for T cells possess myeloid lineage potential[J]. Nature, 2008, 452(7188):764-767.
|
[10] |
SAMBANDAM A, MAILLARD I, ZEDIAK V P, et al. Notch signaling controls the generation and differentiation of early T lineage progenitors[J]. Nat Immunol, 2005, 6(7):663-670.
PMID
|
[11] |
SCHLENNER S M, MADAN V, BUSCH K, et al. Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus[J]. Immunity, 2010, 32(3):426-436.
DOI
PMID
|
[12] |
PAIVA R A, RAMOS C V, LEIRIA G, et al. IL-7 receptor drives early T lineage progenitor expansion[J]. J Immunol, 2022, 209(10):1942-1949.
DOI
PMID
|
[13] |
YE M T, WANG Y, ZUO Z, et al. Integrated clinical genotype-phenotype characteristics of early T-cell precursor acute lymphoblastic leukemia[J]. Cancer, 2023, 129(1):49-59.
|
[14] |
CHANDRA D, SINGH M K, GUPTA R, et al. Clinicopathological and immunophenotypic features of early T cell precursor acute lymphoblastic leukaemia:a flow cytometry score for the initial diagnosis[J]. Int J Lab Hematol, 2021, 43(6):1417-1423.
|
[15] |
RAHMAN K, SINGH P, CHANDRA D, et al. Early T-cell precursor acute lymphoblastic leukemia with Auer rods-a case report[J]. Int J Lab Hematol, 2020, 42(1):e27-e29.
|
[16] |
GAJENDRA S, SACHDEV R, DORWAL P, et al. Mixed-phenotypic acute leukemia:cytochemically myeloid and phenotypically early T-cell precursor acute lymphoblastic leukemia[J]. Blood Res, 2014, 49(3):196-198.
|
[17] |
MARBALLI BASAVARAJU D, MISHRA S, CHHABRA G, et al. Comparison of flowcytometry-based scoring system for the diagnosis of early T precursor-acute lymphoblastic leukemia[J]. Cytometry B Clin Cytom, 2023, 104(6):453-459.
|
[18] |
KHOGEER H, RAHMAN H, JAIN N, et al. Early T precursor acute lymphoblastic leukaemia/lymphoma shows differential immunophenotypic characteristics including frequent CD33 expression and in vitro response to targeted CD33 therapy[J]. Br J Haematol, 2019, 186(4):538-548.
|
[19] |
YOON J H, KIM H S, MIN G J, et al. Cytogenetic and molecular characteristics and outcomes of adult patients with early T-cell precursor acute lymphoblastic leukemia[J]. Eur J Haematol, 2023, 110(2):137-148.
|
[20] |
KRISHNAN Y, S G, JOY A, et al. Childhood early T cell precursor acute lymphoblastic leukaemia with t(12;17)(p13;q21)translocation - a rare entity or part of ETP/myeloid mixed phenotype acute leukaemia[J]. Gulf J Oncolog, 2022, 1(40):78-82.
|
[21] |
KAWASHIMA-GOTO S, IMAMURA T, TOMOYASU C, et al. BCL2 inhibitor (ABT-737):a restorer of prednisolone sensitivity in early T-cell precursor-acute lymphoblastic leukemia with high MEF2C expression?[J]. PLoS One, 2015, 10(7):e132926.
|
[22] |
BALDUS C D, TANNER S M, RUPPERT A S, et al. BAALC expression predicts clinical outcome of de novo acute myeloid leukemia patients with normal cytogenetics:a cancer and leukemia group B study[J]. Blood, 2003, 102(5):1613-1618.
|
[23] |
HEESCH S, SCHLEE C, NEUMANN M, et al. BAALC-associated gene expression profiles define IGFBP7 as a novel molecular marker in acute leukemia[J]. Leukemia, 2010, 24(8):1429-1436.
|
[24] |
FANG H, WANG W, EL HUSSEIN S, et al. B-cell lymphoma/leukaemia 11B(BCL11B)expression status helps distinguish early T-cell precursor acute lymphoblastic leukaemia/lymphoma(ETP-ALL/LBL)from other subtypes of T-cell ALL/LBL[J]. Br J Haematol, 2021, 194(6):1034-1038.
|
[25] |
LU B Y, THANAWALA S U, ZOCHOWSKI K C, et al. Decitabine enhances chemosensitivity of early T-cell precursor-acute lymphoblastic leukemia cell lines and patient-derived samples[J]. Leuk Lymphoma, 2016, 57(8):1938-1941.
|
[26] |
FRANSECKY L, NEUMANN M, HEESCH S, et al. Silencing of GATA3 defines a novel stem cell-like subgroup of ETP-ALL[J]. J Hematol Oncol, 2016, 9(1):95.
|
[27] |
ZHANG J, DING L, HOLMFELDT L, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia[J]. Nature, 2012, 481(7380):157-163.
|
[28] |
XIAO J, CAI Z, WANG H, et al. The clinical characteristics and prognosis of AYA and older adult ETP-ALL/LBL:a real-world multicenter study in China[J]. Front Oncol, 2022, 12:846573.
|
[29] |
ZUURBIER L, GUTIERREZ A, MULLIGHAN C G, et al. Immature MEF2C-dysregulated T-cell leukemia patients have an early T-cell precursor acute lymphoblastic leukemia gene signature and typically have non-rearranged T-cell receptors[J]. Haematologica, 2014, 99(1):94-102.
|
[30] |
ALEXANDER T B, GU Z, IACOBUCCI I, et al. The genetic basis and cell of origin of mixed phenotype acute leukaemia[J]. Nature, 2018, 562(7727):373-379.
|
[31] |
NEUMANN M, HEESCH S, GÖKBUGET N, et al. Clinical and molecular characterization of early T-cell precursor leukemia:a high-risk subgroup in adult T-ALL with a high frequency of FLT3 mutations[J]. Blood Cancer J, 2012, 2(1):e55.
|
[32] |
NEUMANN M, HEESCH S, SCHLEE C, et al. Whole-exome sequencing in adult ETP-ALL reveals a high rate of DNMT3A mutations[J]. Blood, 2013, 121(23):4749-4752.
|
[33] |
LO NIGRO L, ANDRIANO N, BULDINI B, et al. FLT3-ITD in children with early T-cell precursor (ETP)acute lymphoblastic leukemia:incidence and potential target for monitoring minimal residual disease(MRD)[J]. Cancers (Basel), 2022, 14(10):2475.
|
[34] |
NORONHA E P, MARQUES L V C, ANDRADE F G, et al. T-lymphoid/myeloid mixed phenotype acute leukemia and early T-cell precursor lymphoblastic leukemia similarities with NOTCH1 mutation as a good prognostic factor[J]. Cancer Manag Res, 2019, 11:3933-3943.
|
[35] |
TARIQ H, SHETTY S. Emerging necessity of myeloid mutational analysis in early T-cell precursor acute lymphoblastic leukemia/lymphoma (ETP-ALL)[J]. Turk J Haematol, 2023, 40(3):227-229.
|
[36] |
XUE S L, WU D P, SUN A N, et al. CAG regimen enables relapsed or refractory T-cell acute lymphocytic leukemia patients to achieve complete remission:a report of six cases[J]. Am J Hematol, 2008, 83(2):167-170.
|
[37] |
QIAN J J, HU X, WANG Y, et al. CAG regimen for refractory or relapsed adult T-cell acute lymphoblastic leukemia:a retrospective,multicenter,cohort study[J]. Cancer Med, 2020, 9(15):5327-5334.
|
[38] |
BHATLA T, WANG J, MORRISON D J, et al. Epigenetic reprogramming reverses the relapse-specific gene expression signature and restores chemosensitivity in childhood B-lymphoblastic leukemia[J]. Blood, 2012, 119(22):5201-5210.
DOI
PMID
|
[39] |
MENG T, YAO Y, XU Y, et al. Salvage therapy with decitabine in combination with granulocyte colony-stimulating factor,low-dose cytarabine,and aclarubicin in patients with refractory or relapsed early T-cell precursor acute lymphoblastic leukemia[J]. Hematol Oncol, 2020, 38(5):834-837.
|
[40] |
BORAH P, DAYAL N, PATHAK S, et al. Short-course venetoclax with standard chemotherapy is effective in early T-cell precursor acute lymphoblastic leukemia[J]. J Pediatr Hematol Oncol, 2023, 45(5):271-274.
DOI
PMID
|
[41] |
NUMAN Y, ALFAYEZ M, MAITI A, et al. First report of clinical response to venetoclax in early T-cell precursor acute lymphoblastic leukemia[J]. JCO Precis Oncol, 2018, 2:127.
|
[42] |
ARORA S, VACHHANI P, BACHIASHVILI K, et al. Venetoclax with chemotherapy in relapse/refractory early T-cell precursor acute lymphoblastic leukemia[J]. Leuk Lymphoma, 2021, 62(9):2292-2294.
|
[43] |
TREMBLAY C S, SAW J, BOYLE J A, et al. STAT5 activation promotes progression and chemotherapy resistance in early T-cell precursor acute lymphoblastic leukemia[J]. Blood, 2023, 142(3):274-289.
|
[44] |
MAUDE S L, DOLAI S, DELGADO-MARTIN C, et al. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP)acute lymphoblastic leukemia[J]. Blood, 2015, 125(11):1759-1767.
|
[45] |
BATALLER A, GARROTE M, OLIVER-CALDÉS A, et al. Early T-cell precursor lymphoblastic leukaemia:response to FLAG-IDA and high-dose cytarabine with sorafenib after initial refractoriness[J]. Br J Haematol, 2019, 185(4):755-757.
|