[1] |
PETERSEN E, CHAKAYA J, JAWAD F M, et al. Latent tuberculosis infection:diagnostic tests and when to treat[J]. Lancet Infect Dis, 2019, 19(3):231-233.
|
[2] |
World Health Organization. Global tuberculosis report[R]. Geneva:WHO, 2023.
|
[3] |
SINGH S, SHARMA M, CHAUDHRY A, et al. Rv2626c and Rv2032 activate TH1 response and downregulate regulatory T cells in peripheral blood mononuclear cells of tuberculosis patients[J]. Comp Immunol Microbiol Infect Dis, 2019, 62:46-53.
|
[4] |
SUN C, YANG G, YUAN J, et al. Mycobacterium tuberculosis hypoxic response protein 1(Hrp1) augments the pro-inflammatory response and enhances the survival of Mycobacterium smegmatis in murine macrophages[J]. J Med Microbiol, 2017, 66(7):1033-1044.
|
[5] |
ZHANG H, XUE C, WANG Y, et al. Deep RNA sequencing uncovers a repertoire of human macrophage long intergenic noncoding RNAs modulated by macrophage activation and associated with cardiometabolic diseases[J]. J Am Heart Assoc, 2017, 6(11):e007431.
|
[6] |
王永祥. 三种结核DosR蛋白的生理效应及其免疫特性研究[D]. 兰州: 兰州大学, 2017.
|
[7] |
ZHU M, DU J, LIU A D, et al. L-cystathionine inhibits oxidized low density lipoprotein-induced THP-1-derived macrophage inflammatory cytokine monocyte chemoattractant protein-1 generation via the NF-κB pathway[J]. Sci Rep, 2015, 5:10453.
DOI
PMID
|
[8] |
RAVESLOOT-CHÁVEZ M M, VAN DIS E, STANLEY S A. The innate immune response to Mycobacterium tuberculosis infection[J]. Annu Rev Immunol, 2021, 39:611-637.
|
[9] |
PATTANAIK K P, GANGULI G, NAIK S K, et al. Mycobacterium tuberculosis EsxL induces TNF-α secretion through activation of TLR2 dependent MAPK and NF-κB pathways[J]. Mol Immunol, 2021, 130:133-141.
|
[10] |
DRENNAN M B, NICOLLE D, QUESNIAUX V J, et al. Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection[J]. Am J Pathol, 2004, 164(1):49-57.
|
[11] |
LI D, WU M. Pattern recognition receptors in health and diseases[J]. Signal Transduct Target Ther, 2021, 6(1):291.
|
[12] |
JANI C, SOLOMON S L, PETERS J M, et al. TLR2 is non-redundant in the population and subpopulation responses to Mycobacterium tuberculosis in macrophages and in vivo[J]. mSystems, 2023, 8(4):e0005223.
|
[13] |
LOCATI M, CURTALE G, MANTOVANI A. Diversity,mechanisms,and significance of macrophage plasticity[J]. Annu Rev Pathol, 2020, 15:123-147.
|
[14] |
MULLER A J, MONDAL A, DEY S, et al. IDO1 and inflammatory neovascularization:bringing new blood to tumor-promoting inflammation[J]. Front Oncol, 2023, 13:1165298.
|
[15] |
COLLINS J M, SIDDIQA A, JONES D P, et al. Tryptophan catabolism reflects disease activity in human tuberculosis[J]. JCI Insight, 2020, 5(10):e137131.
|
[16] |
GAO X, WU C, HE W, et al. DosR antigen Rv1737c induces activation of macrophages dependent on the TLR2 pathway[J]. Cell Immunol, 2019, 344:103947.
|
[17] |
AKDIS M, AAB A, ALTUNBULAKLI C, et al. Interleukins(from IL-1 to IL-38),interferons,transforming growth factor β,and TNF-α:receptors,functions,and roles in diseases[J]. J Allergy Clin Immunol, 2016, 138(4):984-1010.
|
[18] |
AHLUWALIA P K, PANDEY R K, SEHAJPAL P K, et al. Perturbed microRNA expression by Mycobacterium tuberculosis promotes macrophage polarization leading to pro-survival foam cell[J]. Front Immunol, 2017, 8:107.
|
[19] |
OUIMET M, KOSTER S, SAKOWSKI E, et al. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism[J]. Nat Immunol, 2016, 17(6):677-686.
|
[20] |
CHEN Y C, LEE C P, HSIAO C C, et al. MicroRNA-23a-3p down-regulation in active pulmonary tuberculosis patients with high bacterial burden inhibits mononuclear cell function and phagocytosis through TLR4/TNF-α/TGF-β1/IL-10 signaling via targeting IRF1/SP1[J]. Int J Mol Sci, 2020, 21(22):8587.
|
[21] |
WEI J, HUANG X, ZHANG Z, et al. MyD88 as a target of microRNA-203 in regulation of lipopolysaccharide or Bacille Calmette-Guerin induced inflammatory response of macrophage RAW264.7 cells[J]. Mol Immunol, 2013, 55(3-4):303-309.
DOI
PMID
|