Laboratory Medicine ›› 2024, Vol. 39 ›› Issue (12): 1190-1195.DOI: 10.3969/j.issn.1673-8640.2024.12.010
Previous Articles Next Articles
SHEN Zhan1, BIAN Xiaobo2, HUANG Ying1, WANG Siyang1, SHEN Tingting1, ZHANG Xian1, SONG Yunxiao2, XIE Lianhong1()
Received:
2024-04-30
Revised:
2024-09-11
Online:
2024-12-30
Published:
2025-01-06
CLC Number:
SHEN Zhan, BIAN Xiaobo, HUANG Ying, WANG Siyang, SHEN Tingting, ZHANG Xian, SONG Yunxiao, XIE Lianhong. Stroke recurrence prediction model based on machine learning algorithms using routine blood test[J]. Laboratory Medicine, 2024, 39(12): 1190-1195.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2024.12.010
组别 | 例数 | 性别 | 年龄/岁 | 吸烟史/例 | 饮酒史/例 | 糖尿病史/例 | 高血压史/例 | WBC计数/(×1012·L-1) | RBC计数/(×1012·L-1) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
男/例 | 女/例 | |||||||||||||||||||||||||
卒中未复发组 | 197 | 107 | 90 | 75±11 | 45 | 58 | 26 | 37 | 6.75±3.33 | 3.90±0.71 | ||||||||||||||||
卒中复发组 | 130 | 67 | 63 | 74±12 | 28 | 33 | 16 | 25 | 6.92±2.51 | 4.13±0.62 | ||||||||||||||||
统计值 | 0.242 | 0.805 | 0.077 | 0.642 | 0.055 | 0.010 | 0.503 | 3.341 | ||||||||||||||||||
P值 | 0.622 | 0.422 | 0.782 | 0.423 | 0.814 | 0.919 | 0.597 | 0.001 | ||||||||||||||||||
组别 | Hb/ (g·L-1) | MCV/ fL | MCH/ Pg | MCHC/ (g·L-1) | PLT/ (×109·L-1) | LYMPH#/(×109·L-1) | MO#/(×109·L-1) | NEUT#/(×109·L-1) | ||||||||||||||||||
卒中未复发组 | 119.41±22.87 | 91.96±5.73 | 30.63±2.22 | 333.06±11.14 | 202.99±69.05 | 1.39±0.60 | 0.42±0.20 | 4.77±3.23 | ||||||||||||||||||
卒中复发组 | 125.88±17.84 | 93.22±5.88 | 30.50±2.40 | 332.53±10.91 | 212.94±64.90 | 1.52±0.54 | 0.42±0.17 | 4.77±2.52 | ||||||||||||||||||
统计值 | 3.005 | 2.147 | 0.563 | 0.478 | 1.449 | 2.186 | 0.488 | 0.029 | ||||||||||||||||||
P值 | 0.003 | 0.033 | 0.574 | 0.633 | 0.149 | 0.030 | 0.626 | 0.977 | ||||||||||||||||||
组别 | EO#/ (×109·L-1) | BASO#/(×109·L-1) | RDW-CV/ % | PDW | MPV/ fL | PCT/ % | TC/(mmol·L-1) | TG/(mmol·L-1) | ||||||||||||||||||
卒中未复发组 | 0.17±0.17 | 0.02±0.01 | 13.60±2.09 | 16.09±0.38 | 9.81±1.12 | 0.20±0.06 | 4.98±1.23 | 1.72±0.47 | ||||||||||||||||||
卒中复发组 | 0.15±0.14 | 0.02±0.02 | 13.35±1.62 | 16.07±0.38 | 9.87±1.17 | 0.21±0.05 | 5.68±1.45 | 2.22±0.48 | ||||||||||||||||||
统计值 | 0.916 | 1.342 | 1.274 | 0.563 | 0.495 | 1.421 | 3.489 | 3.981 | ||||||||||||||||||
P值 | 0.361 | 0.181 | 0.204 | 0.574 | 0.621 | 0.157 | <0.001 | <0.001 |
组别 | 例数 | 性别 | 年龄/岁 | 吸烟史/例 | 饮酒史/例 | 糖尿病史/例 | 高血压史/例 | WBC计数/(×1012·L-1) | RBC计数/(×1012·L-1) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
男/例 | 女/例 | |||||||||||||||||||||||||
卒中未复发组 | 197 | 107 | 90 | 75±11 | 45 | 58 | 26 | 37 | 6.75±3.33 | 3.90±0.71 | ||||||||||||||||
卒中复发组 | 130 | 67 | 63 | 74±12 | 28 | 33 | 16 | 25 | 6.92±2.51 | 4.13±0.62 | ||||||||||||||||
统计值 | 0.242 | 0.805 | 0.077 | 0.642 | 0.055 | 0.010 | 0.503 | 3.341 | ||||||||||||||||||
P值 | 0.622 | 0.422 | 0.782 | 0.423 | 0.814 | 0.919 | 0.597 | 0.001 | ||||||||||||||||||
组别 | Hb/ (g·L-1) | MCV/ fL | MCH/ Pg | MCHC/ (g·L-1) | PLT/ (×109·L-1) | LYMPH#/(×109·L-1) | MO#/(×109·L-1) | NEUT#/(×109·L-1) | ||||||||||||||||||
卒中未复发组 | 119.41±22.87 | 91.96±5.73 | 30.63±2.22 | 333.06±11.14 | 202.99±69.05 | 1.39±0.60 | 0.42±0.20 | 4.77±3.23 | ||||||||||||||||||
卒中复发组 | 125.88±17.84 | 93.22±5.88 | 30.50±2.40 | 332.53±10.91 | 212.94±64.90 | 1.52±0.54 | 0.42±0.17 | 4.77±2.52 | ||||||||||||||||||
统计值 | 3.005 | 2.147 | 0.563 | 0.478 | 1.449 | 2.186 | 0.488 | 0.029 | ||||||||||||||||||
P值 | 0.003 | 0.033 | 0.574 | 0.633 | 0.149 | 0.030 | 0.626 | 0.977 | ||||||||||||||||||
组别 | EO#/ (×109·L-1) | BASO#/(×109·L-1) | RDW-CV/ % | PDW | MPV/ fL | PCT/ % | TC/(mmol·L-1) | TG/(mmol·L-1) | ||||||||||||||||||
卒中未复发组 | 0.17±0.17 | 0.02±0.01 | 13.60±2.09 | 16.09±0.38 | 9.81±1.12 | 0.20±0.06 | 4.98±1.23 | 1.72±0.47 | ||||||||||||||||||
卒中复发组 | 0.15±0.14 | 0.02±0.02 | 13.35±1.62 | 16.07±0.38 | 9.87±1.17 | 0.21±0.05 | 5.68±1.45 | 2.22±0.48 | ||||||||||||||||||
统计值 | 0.916 | 1.342 | 1.274 | 0.563 | 0.495 | 1.421 | 3.489 | 3.981 | ||||||||||||||||||
P值 | 0.361 | 0.181 | 0.204 | 0.574 | 0.621 | 0.157 | <0.001 | <0.001 |
组别 | 例数 | 性别 | 年龄/岁 | 吸烟史/例 | 饮酒史/例 | 糖尿病史/例 | 高血压史/例 | WBC计数/(×1012·L-1) | RBC计数/(×1012·L-1) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
男/例 | 女/例 | |||||||||||||||||||||||||
卒中未复发组 | 56 | 29 | 27 | 75±13 | 15 | 20 | 17 | 22 | 6.88±3.48 | 3.97±0.69 | ||||||||||||||||
卒中复发组 | 54 | 28 | 26 | 75±12 | 12 | 21 | 13 | 23 | 6.60±2.65 | 4.24±0.53 | ||||||||||||||||
统计值 | 0.000 | 0.177 | 0.309 | 0.119 | 0.547 | 1.086 | 0.444 | 2.068 | ||||||||||||||||||
P值 | 0.994 | 0.86 | 0.578 | 0.731 | 0.459 | 0.297 | 0.658 | 0.041 | ||||||||||||||||||
组别 | Hb/ (g·L-1) | MCV/ fL | MCH/ Pg | MCHC/ (g·L-1) | PLT/ (×109·L-1) | LYMPH#/(×109·L-1) | MO#/(×109·L-1) | NEUT#/(×109·L-1) | ||||||||||||||||||
卒中未复发组 | 120.49±20.22 | 91.82±6.28 | 30.46±2.20 | 331.87±11.35 | 187.51±61.69 | 1.35±0.58 | 0.41±0.21 | 4.87±3.40 | ||||||||||||||||||
卒中复发组 | 129.02±18.09 | 94.99±4.20 | 30.83±2.34 | 334.76±10.70 | 204.45±52.41 | 1.50±0.53 | 0.43±0.17 | 4.47±2.68 | ||||||||||||||||||
统计值 | 2.447 | 2.199 | 0.801 | 1.272 | 1.429 | 1.785 | 0.527 | 0.624 | ||||||||||||||||||
P值 | 0.016 | 0.030 | 0.425 | 0.206 | 0.156 | 0.077 | 0.599 | 0.534 | ||||||||||||||||||
组别 | EO#/ (×109·L-1) | BASO#/(×109·L-1) | RDW-CV/ % | PDW | MPV/ fL | PCT/ % | TC/(mmol·L-1) | TG/(mmol·L-1) | ||||||||||||||||||
卒中未复发组 | 0.24±0.07 | 0.02±0.01 | 13.51±1.41 | 16.18±0.41 | 9.99±1.05 | 0.18±0.05 | 4.81±1.18 | 1.66±0.42 | ||||||||||||||||||
卒中复发组 | 0.22±0.08 | 0.02±0.01 | 13.31±0.91 | 16.08±0.36 | 9.85±1.07 | 0.20±0.05 | 5.56±1.37 | 2.35±0.60 | ||||||||||||||||||
统计值 | 0.663 | 1.236 | 0.792 | 1.189 | 0.653 | 1.510 | 4.782 | 3.901 | ||||||||||||||||||
P值 | 0.509 | 0.219 | 0.430 | 0.237 | 0.515 | 0.134 | <0.001 | <0.001 |
组别 | 例数 | 性别 | 年龄/岁 | 吸烟史/例 | 饮酒史/例 | 糖尿病史/例 | 高血压史/例 | WBC计数/(×1012·L-1) | RBC计数/(×1012·L-1) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
男/例 | 女/例 | |||||||||||||||||||||||||
卒中未复发组 | 56 | 29 | 27 | 75±13 | 15 | 20 | 17 | 22 | 6.88±3.48 | 3.97±0.69 | ||||||||||||||||
卒中复发组 | 54 | 28 | 26 | 75±12 | 12 | 21 | 13 | 23 | 6.60±2.65 | 4.24±0.53 | ||||||||||||||||
统计值 | 0.000 | 0.177 | 0.309 | 0.119 | 0.547 | 1.086 | 0.444 | 2.068 | ||||||||||||||||||
P值 | 0.994 | 0.86 | 0.578 | 0.731 | 0.459 | 0.297 | 0.658 | 0.041 | ||||||||||||||||||
组别 | Hb/ (g·L-1) | MCV/ fL | MCH/ Pg | MCHC/ (g·L-1) | PLT/ (×109·L-1) | LYMPH#/(×109·L-1) | MO#/(×109·L-1) | NEUT#/(×109·L-1) | ||||||||||||||||||
卒中未复发组 | 120.49±20.22 | 91.82±6.28 | 30.46±2.20 | 331.87±11.35 | 187.51±61.69 | 1.35±0.58 | 0.41±0.21 | 4.87±3.40 | ||||||||||||||||||
卒中复发组 | 129.02±18.09 | 94.99±4.20 | 30.83±2.34 | 334.76±10.70 | 204.45±52.41 | 1.50±0.53 | 0.43±0.17 | 4.47±2.68 | ||||||||||||||||||
统计值 | 2.447 | 2.199 | 0.801 | 1.272 | 1.429 | 1.785 | 0.527 | 0.624 | ||||||||||||||||||
P值 | 0.016 | 0.030 | 0.425 | 0.206 | 0.156 | 0.077 | 0.599 | 0.534 | ||||||||||||||||||
组别 | EO#/ (×109·L-1) | BASO#/(×109·L-1) | RDW-CV/ % | PDW | MPV/ fL | PCT/ % | TC/(mmol·L-1) | TG/(mmol·L-1) | ||||||||||||||||||
卒中未复发组 | 0.24±0.07 | 0.02±0.01 | 13.51±1.41 | 16.18±0.41 | 9.99±1.05 | 0.18±0.05 | 4.81±1.18 | 1.66±0.42 | ||||||||||||||||||
卒中复发组 | 0.22±0.08 | 0.02±0.01 | 13.31±0.91 | 16.08±0.36 | 9.85±1.07 | 0.20±0.05 | 5.56±1.37 | 2.35±0.60 | ||||||||||||||||||
统计值 | 0.663 | 1.236 | 0.792 | 1.189 | 0.653 | 1.510 | 4.782 | 3.901 | ||||||||||||||||||
P值 | 0.509 | 0.219 | 0.430 | 0.237 | 0.515 | 0.134 | <0.001 | <0.001 |
算法 | AUC | 敏感性/% | 特异性/% | 阳性预测值 | 阴性预测值 | 准确性/% | F1值 |
---|---|---|---|---|---|---|---|
XGboost算法 | 0.88 | 83.25 | 92.44 | 0.84 | 0.89 | 87.41 | 0.78 |
RF算法 | 0.76 | 43.44 | 89.38 | 0.72 | 0.72 | 72.08 | 0.53 |
Adaboost算法 | 0.68 | 49.08 | 79.01 | 0.57 | 0.72 | 67.19 | 0.53 |
KNN算法 | 0.60 | 35.16 | 78.36 | 0.49 | 0.66 | 63.29 | 0.40 |
LR算法 | 0.67 | 35.27 | 88.21 | 0.68 | 0.69 | 68.11 | 0.45 |
算法 | AUC | 敏感性/% | 特异性/% | 阳性预测值 | 阴性预测值 | 准确性/% | F1值 |
---|---|---|---|---|---|---|---|
XGboost算法 | 0.88 | 83.25 | 92.44 | 0.84 | 0.89 | 87.41 | 0.78 |
RF算法 | 0.76 | 43.44 | 89.38 | 0.72 | 0.72 | 72.08 | 0.53 |
Adaboost算法 | 0.68 | 49.08 | 79.01 | 0.57 | 0.72 | 67.19 | 0.53 |
KNN算法 | 0.60 | 35.16 | 78.36 | 0.49 | 0.66 | 63.29 | 0.40 |
LR算法 | 0.67 | 35.27 | 88.21 | 0.68 | 0.69 | 68.11 | 0.45 |
[1] | GBD 2019 Stroke Collaborators. Global,regional,and national burden of stroke and its risk factors,1990-2019:a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Neurol,2021, 20(10):795-820. |
[2] | DONKOR E S. Stroke in the 21st century:a snapshot of the burden,epidemiology,and quality of life[J]. Stroke Res Treat, 2018,2018:3238165. |
[3] | DING Q, LIU S, YAO Y, et al. Global,regional,and national burden of ischemic stroke,1990-2019[J]. Neurology, 2022, 98(3):e279-e290. |
[4] | VODENCAREVIC A, WEINGÄRTNER M, CARO J J, et al. Prediction of recurrent ischemic stroke using registry data and machine learning methods:the erlangen stroke registry[J]. Stroke, 2022, 53(7):2299-2306. |
[5] | SUMI S, ORIGASA H, HOUKIN K, et al. A modified Essen stroke risk score for predicting recurrent cardiovascular events:development and validation[J]. Int J Stroke, 2013, 8(4):251-257. |
[6] | DIENER H C, RINGLEB P A, SAVI P. Clopidogrel for the secondary prevention of stroke[J]. Expert Opin Pharmacother, 2005, 6(5):755-764. |
[7] | FENG G H, LI H P, LI Q L, et al. Red blood cell distribution width and ischaemic stroke[J]. Stroke Vasc Neurol, 2017, 2(3):172-175. |
[8] | LAPPEGÅRD J, ELLINGSEN T S, SKJELBAKKEN T, et al. Red cell distribution width is associated with future risk of incident stroke[J]. Thromb Haemost, 2016, 115(1):126-134. |
[9] | 刘淑静, 常欣魁, 陈柯霖, 等. 载脂蛋白E基因多态性与脑梗患者年龄和血脂的相关性研究[J]. 标记免疫分析与临床, 2018, 25(11):1595-1598. |
[10] | BUSHNELL C, KERNAN W N, SHARRIEF A Z, et al. 2024 guideline for the primary prevention of stroke:a guideline from the American Heart Association/American Stroke Association[J]. Stroke, 2024, 55(12):e344-e424. |
[11] | PERERA K S, DE SA BOASQUEVISQUE D, RAO-MELACINI P, et al. Evaluating rates of recurrent ischemic stroke among young adults with embolic stroke of undetermined source:the young ESUS longitudinal cohort study[J]. JAMA Neurol, 2022, 79(5):450-458. |
[12] |
王双, 陈思, 付阳, 等. 机器学习在血细胞分析中智能筛查原始细胞的应用[J]. 检验医学, 2019, 34(12):1118-1123.
DOI |
[13] | 贾音, 孙婷婷, 刘海东, 等. 常规检验大数据在胃癌早期诊断中的应用[J]. 中华检验医学杂志, 2021, 44(3):197-203. |
[14] | 郭杰, 刘海东, 韦琴, 等. 基于检验大数据的结直肠癌风险预测模型建立与验证[J]. 中华检验医学杂志, 2021, 44(10):914-920. |
[15] | HE M, WANG H, TANG Y, et al. Red blood cell distribution width in different time-points of peripheral thrombolysis period in acute ischemic stroke is associated with prognosis[J]. Aging(Albany NY), 2022, 14(14):5749-5767. |
[16] | SHEN Z, HUANG Y, ZHOU Y, et al. Association between red blood cell distribution width and ischemic stroke recurrence in patients with acute ischemic stroke:a 10-years retrospective cohort analysis[J]. Aging(Albany NY), 2023, 15(8):3052-3063. |
[17] | JIA Y P, WANG J M, LYU J Q, et al. Triglyceride-rich lipoproteins cholesterol,10-years atherosclerotic cardiovascular disease risk,and risk of myocardial infarction and ischemic stroke[J]. J Lipid Res, 2024, 65(11):100653. |
[18] | 彭蘡, 黄婷, 徐燕. 载脂蛋白E、三酰甘油、LDL-C及联合检测在早期动脉粥样硬化性脑梗死患者中的应用价值[J]. 医学信息, 2023, 36(20):99-102. |
[1] | LIU Yi, SU Xiaoming, WANG Yuanyuan, JU Tao. Roles of serum L-Arg and IL-4 levels in predicting recurrent ischemic stroke in patients with symptomatic carotid artery stenosis [J]. Laboratory Medicine, 2024, 39(7): 634-639. |
[2] | HUANG Ying, ZHOU Ying, SONG Yunxiao, MAO Junjie, GUAN Chao, ZHAO Jinyan, NI Peiqing. Pulmonary tuberculosis diagnosis model for blood routine test based on machine learning algorithms [J]. Laboratory Medicine, 2024, 39(7): 668-672. |
[3] | DING Jing, ZHANG Chunling, WANG Xiaorui, LI Huidan, WANG Hongling, LIU Weiling, LIN Lihui, LI Li. Laboratory diagnosis and prognostic factor analysis of core binding factor-related acute myeloid leukemia [J]. Laboratory Medicine, 2024, 39(7): 673-681. |
[4] | GU Liangliang, WANG Jianfeng, QIAO Xin, ZHANG Baochao, FU Guohui. Correlation between serum LRG1 level and cognitive impairment and recurrence in patients with acute ischemic stroke [J]. Laboratory Medicine, 2024, 39(5): 443-448. |
[5] | WANG Xuexing, CHEN Chunmei, HE Yuan, CHU Jie, WEI Chunmei. Roles of thromboelastography and coagulation index in predicting venous thromboembolism in patients with tumors [J]. Laboratory Medicine, 2024, 39(5): 491-496. |
[6] | MA Jianguo, LI Hongchun. Correlation between blood lipid levels and cardiac function indexes in patients with coronary heart disease [J]. Laboratory Medicine, 2023, 38(7): 659-664. |
[7] | JIN Suli, ZHAO Jing, ZHANG Jie, HOU Xuening, FANG Yanchao, YANG Li, MI Yujing. Relationship between thyroid hormones and bile acid subfractions and blood lipids in Graves' disease patients [J]. Laboratory Medicine, 2023, 38(6): 563-568. |
[8] | WU Youhong, SONG Yunxiao, ZHU Yong, GE Wen, BIAN Xiaobo, YUAN Wenhua, ZHAO Zhiyun. Role of blood lipid levels in assessment of coronary artery stenosis and its treatment in patients with coronary heart disease [J]. Laboratory Medicine, 2023, 38(6): 584-589. |
[9] | ZHAO Jing, WANG Pei, LU Dandan, QI Dandan, LI Xuan. Expression levels of serum miR-4443 and TRAF4 in patients with hemorrhagic stroke [J]. Laboratory Medicine, 2023, 38(5): 413-418. |
[10] | WU Ying, ZHANG Lihong, GAO Yin. Predictive value of high-density lipoprotein cholesterol on the risk of cerebral ischemic stroke in type 2 diabetes mellitus patients [J]. Laboratory Medicine, 2023, 38(11): 1052-1056. |
[11] | ZHU Qian, ZHU Lifang, MA Caiyun, YAO Jie. Relation of serum miR-140-5p and PGC-1α mRNA expression with vascular cognitive impairment in acute ischemic stroke patients [J]. Laboratory Medicine, 2023, 38(11): 1069-1074. |
[12] | SHEN Jianguo, LI Tingting, SONG Yunxiao, BIAN Xiaobo, ZHANG Linlin, JIN Xiaoling. Clinical role of blood lipid in brittle fracture elderly patients with osteoporosis [J]. Laboratory Medicine, 2022, 37(6): 535-538. |
[13] | LIANG Chunfang, ZHU Kangning, ZHANG Qi. Serum miR-21 and miR-135a expression levels in predicting the recurrence and metastasis of gastric cancer patients after chemotherapy [J]. Laboratory Medicine, 2022, 37(5): 417-422. |
[14] | ZHENG Yu, CHEN Jin. Correlation between serum follistatin and clinicopathological characteristics and prognosis of patients with differentiated thyroid cancer [J]. Laboratory Medicine, 2022, 37(11): 1066-1070. |
[15] | MAO Zheng, QIAN Zengkun, YING Fei, WANG Zhaoli, XIAO Qun, CUI Fan. Correlation between E-Cad,G-17,HER-2 and postoperative recurrence risk of gastric cancer [J]. Laboratory Medicine, 2022, 37(1): 41-46. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||