Laboratory Medicine ›› 2025, Vol. 40 ›› Issue (12): 1190-1196.DOI: 10.3969/j.issn.1673-8640.2025.12.009
CHANG Nan, WEI Yali, LU Qifeng, LI Tian, HOU Tingting, LI Yuan, ZHU Mengyu, SHEN Yajuan(
)
Received:2025-05-06
Revised:2025-10-29
Online:2025-12-30
Published:2025-12-26
Contact:
SHEN Yajuan
CLC Number:
CHANG Nan, WEI Yali, LU Qifeng, LI Tian, HOU Tingting, LI Yuan, ZHU Mengyu, SHEN Yajuan. A machine learning early warning model for acute promyelocytic leukemia based on blood cell analyzer parameters[J]. Laboratory Medicine, 2025, 40(12): 1190-1196.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2025.12.009
| 项目 | 性别 | 年龄/岁 | |
|---|---|---|---|
| 男/ [例(%)] | 女/ [例(%)] | ||
| APL患者 | 64(52.46) | 58(47.54) | 41(2~83) |
| 其他AML患者 | 210(52.90) | 187(47.10) | 53(11~82) |
| 淋巴组织肿瘤患者 | 243(55.35) | 196(44.65) | 59(1~91) |
| 健康对照者 | 492(49.95) | 493(50.05) | 41(18~80) |
| 项目 | 性别 | 年龄/岁 | |
|---|---|---|---|
| 男/ [例(%)] | 女/ [例(%)] | ||
| APL患者 | 64(52.46) | 58(47.54) | 41(2~83) |
| 其他AML患者 | 210(52.90) | 187(47.10) | 53(11~82) |
| 淋巴组织肿瘤患者 | 243(55.35) | 196(44.65) | 59(1~91) |
| 健康对照者 | 492(49.95) | 493(50.05) | 41(18~80) |
| ML模型 | AUC | 准确度 | 敏感性 | 特异性 | 阳性预测值概率 | 阴性预测值概率 | 精确率 | 召回率 | F1分数 |
|---|---|---|---|---|---|---|---|---|---|
| 轻量梯度提升机 | 0.974 | 0.918 | 0.820 | 0.971 | 0.921 | 0.976 | 0.921 | 0.819 | 0.867 |
| 支持向量机 | 0.965 | 0.833 | 0.775 | 0.945 | 0.869 | 0.955 | 0.869 | 0.775 | 0.819 |
| 多层感知器 | 0.968 | 0.906 | 0.832 | 0.968 | 0.852 | 0.971 | 0.852 | 0.832 | 0.842 |
| 多项逻辑回归 | 0.965 | 0.908 | 0.849 | 0.969 | 0.853 | 0.971 | 0.853 | 0.849 | 0.851 |
| 随机森林 | 0.966 | 0.893 | 0.709 | 0.964 | 0.895 | 0.969 | 0.885 | 0.708 | 0.794 |
| ML模型 | AUC | 准确度 | 敏感性 | 特异性 | 阳性预测值概率 | 阴性预测值概率 | 精确率 | 召回率 | F1分数 |
|---|---|---|---|---|---|---|---|---|---|
| 轻量梯度提升机 | 0.974 | 0.918 | 0.820 | 0.971 | 0.921 | 0.976 | 0.921 | 0.819 | 0.867 |
| 支持向量机 | 0.965 | 0.833 | 0.775 | 0.945 | 0.869 | 0.955 | 0.869 | 0.775 | 0.819 |
| 多层感知器 | 0.968 | 0.906 | 0.832 | 0.968 | 0.852 | 0.971 | 0.852 | 0.832 | 0.842 |
| 多项逻辑回归 | 0.965 | 0.908 | 0.849 | 0.969 | 0.853 | 0.971 | 0.853 | 0.849 | 0.851 |
| 随机森林 | 0.966 | 0.893 | 0.709 | 0.964 | 0.895 | 0.969 | 0.885 | 0.708 | 0.794 |
| 项目 | 1折 | 2折 | 3折 | 4折 | 5折 | 6折 | 7折 | 8折 | 9折 | 10折 |
|---|---|---|---|---|---|---|---|---|---|---|
| AUC | 0.962 | 0.937 | 0.985 | 0.991 | 0.974 | 0.984 | 0.986 | 0.940 | 0.959 | 0.970 |
| PR-AUC | 0.911 | 0.836 | 0.961 | 0.984 | 0.944 | 0.970 | 0.960 | 0.840 | 0.901 | 0.945 |
| 项目 | 1折 | 2折 | 3折 | 4折 | 5折 | 6折 | 7折 | 8折 | 9折 | 10折 |
|---|---|---|---|---|---|---|---|---|---|---|
| AUC | 0.962 | 0.937 | 0.985 | 0.991 | 0.974 | 0.984 | 0.986 | 0.940 | 0.959 | 0.970 |
| PR-AUC | 0.911 | 0.836 | 0.961 | 0.984 | 0.944 | 0.970 | 0.960 | 0.840 | 0.901 | 0.945 |
| 项目 | 训练集 | 测试集 | 外部验证 | |||||
|---|---|---|---|---|---|---|---|---|
| AUC | PR-AUC | AUC | PR-AUC | AUC | PR-AUC | |||
| APL患者 | 0.999 | 0.993 | 0.976 | 0.906 | 0.969 | 0.718 | ||
| 其他AML患者 | 0.995 | 0.985 | 0.985 | 0.951 | 0.972 | 0.786 | ||
| 淋巴组织肿瘤患者 | 0.997 | 0.991 | 0.980 | 0.940 | 0.885 | 0.730 | ||
| 健康对照者 | 1.000 | 1.000 | 1.000 | 1.000 | 0.989 | 0.986 | ||
| 项目 | 训练集 | 测试集 | 外部验证 | |||||
|---|---|---|---|---|---|---|---|---|
| AUC | PR-AUC | AUC | PR-AUC | AUC | PR-AUC | |||
| APL患者 | 0.999 | 0.993 | 0.976 | 0.906 | 0.969 | 0.718 | ||
| 其他AML患者 | 0.995 | 0.985 | 0.985 | 0.951 | 0.972 | 0.786 | ||
| 淋巴组织肿瘤患者 | 0.997 | 0.991 | 0.980 | 0.940 | 0.885 | 0.730 | ||
| 健康对照者 | 1.000 | 1.000 | 1.000 | 1.000 | 0.989 | 0.986 | ||
| [1] | 中华医学会血液学分会, 中国医师协会血液科医师分会. 中国急性早幼粒细胞白血病诊疗指南(2018年版)[J]. 中华血液学杂志, 2018, 39(3):179-183. |
| [2] |
ZHU H H, WU D P, DU X, et al. Oral arsenic plus retinoic acid versus intravenous arsenic plus retinoic acid for non-high-risk acute promyelocytic leukaemia:a non-inferiority,randomised phase 3 trial[J]. Lancet Oncol, 2018, 19(7):871-879.
DOI URL |
| [3] |
JILLELLA A P, KOTA V K. The global problem of early deaths in acute promyelocytic leukemia:a strategy to decrease induction mortality in the most curable leukemia[J]. Blood Rev, 2018, 32(2):89-95.
DOI URL |
| [4] |
SCHUH A C. Timely diagnosis and treatment of acute promyelocytic leukemia should be available to all[J]. Haematologica, 2022, 107(3):570-571.
DOI URL |
| [5] | DI LUISE D, GIANNOTTA J A, AMMIRABILE M, et al. Cell population data NE-WX,NE-FSC,LY-Y of Sysmex XN-9000 can provide additional information to differentiate macrocytic anaemia from myelodysplastic syndrome:a preliminar study[J]. Inyt J Lab Hematol, 2022, 44(1):e40-e43. |
| [6] |
ZHOU Q, CHEN Z H, CAO Y H, et al. Clinical impact and quality of randomized controlled trials involving interventions evaluating artificial intelligence prediction tools:a systematic review[J]. NPJ Digit Med, 2021, 4(1):154.
DOI |
| [7] |
HALLING-BROWN M D, WARREN L M, WARD D, et al. OPTIMAM mammography image database:a large-scale resource of mammography images and clinical data[J]. Radiol Artif Intell, 2020, 3(1):e200103.
DOI URL |
| [8] | The WHO Classification of Tumours Editorial Board. WHO classification of tumors:haematolymphoid tumours[M]. 5th ed. Lyon: IARC Press, 2024. |
| [9] | SWERDLOW S H, CAMPO E, HARRIS N L, et al. WHO classification of tumours of haematopoietic and lymphoid tissues[M]. 4th ed. Lyon: IARC Press, 2017. |
| [10] | CARNEY M, PELAIA T M, CHEW T, et al. Host transcriptomics and machine learning for secondary bacterial infections in patients with COVID-19:a prospective,observational cohort study[J]. Lancet Microbe, 2024, 5(3):e272-e281. |
| [11] | ZHANG Z, WANG S, ZHU Z, et al. Identification of potential feature genes in non-alcoholic fatty liver disease using bioinformatics analysis and machine learning strategies[J]. Comput Biol Med, 2023,157:106724. |
| [12] |
ADAMS R S, JIANG T, ROSELLINI A J, et al. Sex-specific risk profiles for suicide among persons with substance use disorders in Denmark[J]. Addiction, 2021, 116(10):2882-2892.
DOI PMID |
| [13] |
ZHEN Y, WANG L, SUN H, et al. Prediction of microplastic abundance in surface water of the ocean and influencing factors based on ensemble learning[J]. Environ Pollut, 2023, 331(Pt 2):121834.
DOI URL |
| [14] |
AHN B C, SO J W, SYNN C B, et al. Clinical decision support algorithm based on machine learning to assess the clinical response to anti-programmed death-1 therapy in patients with non-small-cell lung cancer[J]. Eur J Cancer, 2021,153:179-189.
DOI URL |
| [15] |
ADES L, CHEVRET S, DE BOTTON S, et al. Outcome of acute promyelocytic leukemia treated with all trans retinoic acid and chemotherapy in elderly patients:the European group experience[J]. Leukemia, 2005, 19(2):230-233.
DOI |
| [16] | 中华医学会检验医学分会血液学与体液学学组. 血细胞分析报告规范化指南[J]. 中华检验医学杂志, 2020, 43(6):619-627. |
| [17] | SEGHEZZI M, MANENTI B, PREVITALI G, et al. A specific abnormal scattergram of peripheral blood leukocytes that may suggest hairy cell leukemia[J]. Clin Chem Lab Med, 2018, 56(5):e108-e111. |
| [18] |
SHESTAKOVA A, NAEL A, NORA V, et al. Automated leukocyte parameters are useful in the assessment of myelodysplastic syndromes[J]. Cytometry B Clin Cytom, 2021, 100(3):299-311.
DOI URL |
| [19] |
YANG J H, KIM Y, LIM J, et al. Determination of acute leukemia lineage with new morphologic parameters available in the complete blood cell count[J]. Ann Clin Lab Sci, 2014, 44(1):19-26.
PMID |
| [20] |
王双, 陈思, 付阳, 等. 机器学习在血细胞分析中智能筛查原始细胞的应用[J]. 检验医学, 2019, 34(12):1118-1123.
DOI |
| [21] |
MISHRA S, CHHABRA G, PADHI S, et al. Usefulness of leucocyte cell population data by Sysmex XN1000 hematology analyzer in rapid identification of acute leukemia[J]. Indian J Hematol Blood Transfus, 2022, 38(3):499-507.
DOI |
| [22] |
ZHANG L, LIU J, QIN X, et al. Platelet-acute leukemia interactions[J]. Clin Chim Acta, 2022,536:29-38.
DOI PMID |
| [1] | GUAN Chao, HUANG Ying, SONG Yunxiao, ZHOU Ying. Application of a machine learning model based on routine inflammatory markers to distinguish the severity of community-acquired pneumonia [J]. Laboratory Medicine, 2025, 40(7): 680-686. |
| [2] | WANG Xumei, XU Dongqing, GAO Limei, ZHANG Lihua, JIANG Wenli, WANG Weiwei, MA Juan, SHEN Lisong. Construction of a machine learning-based model for predicting the risk of neuroblastoma bone metastasis [J]. Laboratory Medicine, 2025, 40(6): 534-539. |
| [3] | MA Jingyun, WANG Mengmeng, XIONG Boyu, DAI Zhuowen, PAN Yueyue, WANG Qiong. Research progress in phenotypic characteristics and treatment efficacy evaluation of acute promyelocytic leukemia variants [J]. Laboratory Medicine, 2025, 40(6): 606-614. |
| [4] | LING Xiaoting, PAN Liqiu, HUANG Yunhua, WEI Yuanyuan, DENG Xiaohui, YE Lihua, LIN Faquan, HUANG Yifang. Establishment of machine learning discriminatory formulas for thalassemia and iron deficiency anemia based on red blood cell morphology and parameters [J]. Laboratory Medicine, 2025, 40(4): 365-371. |
| [5] | LI Mingchao, SHEN Tong, ZHOU Binghe, DOU Xin, HU Liang, CHANG Dong, ZHANG Ze. Evaluation of prognosis prediction effects in acute ischemic stroke patients based on machine learning algorithms [J]. Laboratory Medicine, 2025, 40(10): 1004-1009. |
| [6] | LUO Yuanmei, LIU Chang, CHEN Lilong, LI Zhenzhang, YUE Yubiao, LI Yang, XU Lingqing. Acute promyelocytic leukemia diagnosis assisted by YOLOV8 deep learning model [J]. Laboratory Medicine, 2025, 40(10): 998-1003. |
| [7] | HUANG Ying, ZHOU Ying, SONG Yunxiao, MAO Junjie, GUAN Chao, ZHAO Jinyan, NI Peiqing. Pulmonary tuberculosis diagnosis model for blood routine test based on machine learning algorithms [J]. Laboratory Medicine, 2024, 39(7): 668-672. |
| [8] | SHEN Zhan, BIAN Xiaobo, HUANG Ying, WANG Siyang, SHEN Tingting, ZHANG Xian, SONG Yunxiao, XIE Lianhong. Stroke recurrence prediction model based on machine learning algorithms using routine blood test [J]. Laboratory Medicine, 2024, 39(12): 1190-1195. |
| [9] | SHEN Xiaoya, LOU Yinjun, WANG Wenjuan. Establishment of survival model for predicting prognosis of patients with acute promyelocytic leukemia [J]. Laboratory Medicine, 2021, 36(3): 292-295. |
| [10] | WANG Shuang, CHEN Si, FU Yang, MAO Zhigang, JIANG Hong. Role of machine learning in peripheral blood blast intelligent determination [J]. Laboratory Medicine, 2019, 34(12): 1118-1123. |
| [11] | ZHANG Xiaohui, XING Jiangtao, ZHANG Yuna, LI Jianying, MIAO Rui, HU Rui, ZHU Yun. Laboratory examination analysis of 1 case of variability acute promyelocytic leukemia [J]. Laboratory Medicine, 2019, 34(10): 871-875. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||