Laboratory Medicine ›› 2025, Vol. 40 ›› Issue (1): 96-101.DOI: 10.3969/j.issn.1673-8640.2025.01.017
Previous Articles Next Articles
MA Xinxin1, LU Hongxiang2, SHI Qinghai3()
Received:
2024-05-06
Revised:
2024-09-27
Online:
2025-01-30
Published:
2025-02-17
CLC Number:
MA Xinxin, LU Hongxiang, SHI Qinghai. Human phospholipid scramblase 1 in antiviral infection[J]. Laboratory Medicine, 2025, 40(1): 96-101.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2025.01.017
[1] | RAYALA S, SIVAGNANAM U, GUMMADI S N. Biophysical characterization of the DNA binding motif of human phospholipid scramblase 1[J]. Eur Biophys J, 2022, 51(7-8):579-593. |
[2] | SAKURAGI T, NAGATA S. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases[J]. Nat Rev Mol Cell Biol, 2023, 24(8):576-596. |
[3] | WANG Y, KINOSHITA T. The role of lipid scramblases in regulating lipid distributions at cellular membranes[J]. Biochem Soc Trans, 2023, 51(5):1857-1869. |
[4] | TANG D, WANG Y, DONG X, et al. Scramblases and virus infection[J]. Bioessays, 2022, 44(12):e2100261. |
[5] | XU D, JIANG W, WU L, et al. PLSCR1 is a cell-autonomous defence factor against SARS-CoV-2 infection[J]. Nature, 2023, 619(7971):819-827. |
[6] | DAL COL J, LAMBERTI M J, NIGRO A, et al. Phospholipid scramblase 1:a protein with multiple functions via multiple molecular interactors[J]. Cell Commun Signal, 2022, 20(1):78. |
[7] | MERTOWSKA P, SMOLAK K, MERTOWSKI S, et al. Immunomodulatory role of interferons in viral and bacterial infections[J]. Int J Mol Sci, 2023, 24(12):10115. |
[8] | LI M. Fortifying immunity:PLSCR1 picks battle against SARS-CoV-2[J]. Cell Host Microbe, 2023, 31(9):1417-1419. |
[9] | KOUSATHANAS A, PAIRO-CASTINEIRA E, RAWLIK K, et al. Whole-genome sequencing reveals host factors underlying critical COVID-19[J]. Nature, 2022, 607(7917):97-103. |
[10] |
HILLIGAN K L, NAMASIVAYAM S, CLANCY C S, et al. Bacterial-induced or passively administered interferon gamma conditions the lung for early control of SARS-CoV-2[J]. Nat Commun, 2023, 14(1):8229.
DOI PMID |
[11] |
OUDIT G Y, WANG K, VIVEIROS A, et al. Angiotensin-converting enzyme 2-at the heart of the COVID-19 pandemic[J]. Cell, 2023, 186(5):906-922.
DOI PMID |
[12] | THIRUMUGAM G, RADHAKRISHNAN Y, RAMAMURTHI S, et al. A systematic review on impact of SARS-CoV-2 infection[J]. Microbiol Res, 2023, 271:127364. |
[13] | LE PEN J, PANICCIA G, KINAST V, et al. A genome-wide arrayed CRISPR screen identifies PLSCR1 as an intrinsic barrier to SARS-CoV-2 entry that recent virus variants have evolved to resist[J]. PLoS Biol, 2024, 22(9):e3002767. |
[14] |
YANG H, DONG Y, BIAN Y, et al. The influenza virus PB2 protein evades antiviral innate immunity by inhibiting JAK1/STAT signalling[J]. Nat Commun, 2022, 13(1):6288.
DOI PMID |
[15] |
陈丹阳, 郑思钰, 郑锐林, 等. 流感病毒研究进展[J]. 检验医学, 2023, 38(7):696-703.
DOI |
[16] | LUO W, ZHANG J, LIANG L, et al. Phospholipid scramblase 1 interacts with influenza A virus NP,impairing its nuclear import and thereby suppressing virus replication[J]. PLoS Pathog, 2018, 14(1):e1006851. |
[17] |
LIU Y, LIN S, XIE Y, et al. ILDR1 promotes influenza A virus replication through binding to PLSCR1[J]. Sci Rep, 2022, 12(1):8515.
DOI PMID |
[18] |
SHAN S, ZHAO X, JIA J. Comprehensive approach to controlling chronic hepatitis B in China[J]. Clin Mol Hepatol, 2024, 30(2):135-143.
DOI PMID |
[19] | YANG J, ZHU X, LIU J, et al. Inhibition of Hepatitis B virus replication by phospholipid scramblase 1 in vitro and in vivo[J]. Antiviral Res, 2012, 94(1):9-17. |
[20] | ASHOURI S, KHOR S S, HITOMI Y, et al. Genome-wide association study for chronic hepatitis B infection in the Thai population[J]. Front Genet, 2022, 13:887121. |
[21] | WANG F, SONG H, XU F, et al. Role of hepatitis B virus non-structural protein HBx on HBV replication,interferon signaling,and hepatocarcinogenesis[J]. Front Microbiol, 2023, 14:1322892. |
[22] | CHOONNASARD A, SHOFA M, OKABAYASHI T, et al. Conserved functions of Orthohepadnavirus X proteins to inhibit type-Ⅰ interferon signaling[J]. Int J Mol Sci, 2024, 25(7):3753. |
[23] | HILLAIRE M L B, LAWRENCE P, LAGRANGE B. IFN-γ:a crucial player in the fight against HBV infection?[J]. Immune Netw, 2023, 23(4):e30. |
[24] | SANCHEZ V, BRITT W. Human cytomegalovirus egress:overcoming barriers and co-opting cellular functions[J]. Viruses, 2021, 14(1):15. |
[25] |
AMSLER L, VERWEIJ M, DEFILIPPIS V R. The tiers and dimensions of evasion of the type I interferon response by human cytomegalovirus[J]. J Mol Biol, 2013, 425(24):4857-4871.
DOI PMID |
[26] | DELL'OSTE V,BIOLATTI M,GALITSKA G,et al. Tuning the orchestra:HCMV vs. Innate Immunity[J]. Front Microbiol, 2020, 11:661. |
[27] | SADANARI H, TAKEMOTO M, ISHIDA T, et al. The interferon-inducible human PLSCR1 protein is a restriction factor of human cytomegalovirus[J]. Microbiol Spectr, 2022, 10(1):e0134221. |
[28] | FRAPPIER L. Epstein-Barr virus is an agent of genomic instability[J]. Nature, 2023, 616(7957):441-442. |
[29] | UDDIN M K, WATANABE T, ARATA M, et al. Epstein-Barr virus BBLF1 mediates secretory vesicle transport to facilitate mature virion release[J]. J Virol, 2023, 97(6):e0043723. |
[30] |
KUSANO S, IKEDA M. Interaction of phospholipid scramblase 1 with the Epstein-Barr virus protein BZLF1 represses BZLF1-mediated lytic gene transcription[J]. J Biol Chem, 2019, 294(41):15104-15116.
DOI PMID |
[31] | World Health Organization. HIV[EB/OL]. (2023-12-31)[2024-09-26]. https://www.who.int/data/gho/data/themes/hiv-aids. |
[32] | The Joint United Nations Programme on HIV/AIDS. Global HIV & AIDS statistics-fact sheet[EB/OL]. (2023-12-31)[2024-03-31]. https://www.unaids.org/en/resources/fact-sheet. |
[33] |
DHARAN A, BACHMANN N, TALLEY S, et al. Nuclear pore blockade reveals that HIV-1 completes reverse transcription and uncoating in the nucleus[J]. Nat Microbiol, 2020, 5(9):1088-1095.
DOI PMID |
[34] |
MÜLLER T G, ZILA V, MÜLLER B, et al. Nuclear capsid uncoating and reverse transcription of HIV-1[J]. Annu Rev Virol, 2022, 9(1):261-284.
DOI PMID |
[35] | JÄGER N, PÖHLMANN S, RODNINA M V, et al. Interferon-stimulated genes that target retrovirus translation[J]. Viruses, 2024, 16(6):933. |
[36] | CAFARO A, SCHIETROMA I, SERNICOLA L, et al. Role of HIV-1 Tat protein interactions with host receptors in HIV infection and pathogenesis[J]. Int J Mol Sci, 2024, 25(3):1704. |
[37] | MOUSSEAU G, ANEJA R, CLEMENTZ M A, et al. Resistance to the Tat inhibitor didehydro-cortistatin A is mediated by heightened basal HIV-1 transcription[J]. mBio, 2019, 10(4):e01750-18. |
[38] | KUSANO S, EIZURU Y. Interaction of the phospholipid scramblase 1 with HIV-1 Tat results in the repression of Tat-dependent transcription[J]. Biochem Biophys Res Commun, 2013, 433(4):438-444. |
[39] | SPECTOR C, MELE A R, WIGDAHL B, et al. Genetic variation and function of the HIV-1 Tat protein[J]. Med Microbiol Immunol, 2019, 208(2):131-169. |
[40] | VAN RYK D, VIMONPATRANON S, HIATT J, et al. The V2 domain of HIV gp120 mimics an interaction between CD4 and integrin α4β7[J]. PLoS Pathog, 2023, 19(12):e1011860. |
[41] | CHEN Q, ZHAO Y, ZHANG Y, et al. HIV associated cell death:peptide-induced apoptosis restricts viral transmission[J]. Front Immunol, 2023, 14:1096759. |
[42] | SPONAUGLE A, WEIDEMAN A M K, RANEK J, et al. Dominant CD4+ T cell receptors remain stable throughout antiretroviral therapy-mediated immune restoration in people with HIV[J]. Cell Rep Med, 2023, 4(11):101268. |
[43] | PY B, BASMACIOGULLARI S, BOUCHET J, et al. The phospholipid scramblases 1 and 4 are cellular receptors for the secretory leukocyte protease inhibitor and interact with CD4 at the plasma membrane[J]. PLoS One, 2009, 4(3):e5006. |
[44] |
MORRISON C S, CHEN P L, YAMAMOTO H, et al. Concomitant imbalances of systemic and mucosal immunity increase HIV acquisition risk[J]. J Acquir Immune Defic Syndr, 2020, 84(1):85-91.
DOI PMID |
[45] | GOVENDER Y, MORRISON C S, CHEN P L, et al. Cervical and systemic innate immunity predictors of HIV risk linked to genital herpes acquisition and time from HSV-2 seroconversion[J]. Sex Transm Infect, 2023, 99(5):311-316. |
[46] | LEGRAND N, MCGREGOR S, BULL R, et al. Clinical and public health implications of human T-lymphotropic virus type 1 infection[J]. Clin Microbiol Rev, 2022, 35(2):e0007821. |
[47] | KALEMERA M D, MAHER A K, DOMINGUEZ-VILLAR M, et al. Cell culture evaluation hints widely available HIV drugs are primed for success if repurposed for HTLV-1 prevention[J]. Pharmaceuticals(Basel), 2024, 17(6):730. |
[48] |
HLEIHEL R, SKAYNEH H, DE THÉ H, et al. Primary cells from patients with adult T cell leukemia/lymphoma depend on HTLV-1 Tax expression for NF-κB activation and survival[J]. Blood Cancer J, 2023, 13(1):67.
DOI PMID |
[49] | NOZUMA S, KUBOTA R, JACOBSON S. Human T-lymphotropic virus type 1(HTLV-1)and cellular immune response in HTLV-1-associated myelopathy/tropical spastic paraparesis[J]. J Neurovirol, 2020, 26(5):652-663. |
[50] |
KUSANO S, EIZURU Y. Human phospholipid scramblase 1 interacts with and regulates transactivation of HTLV-1 tax[J]. Virology, 2012, 432(2):343-352.
DOI PMID |
[51] | CARCONE A, JOURNO C, DUTARTRE H. Is the HTLV-1 retrovirus targeted by host restriction factors?[J]. Viruses, 2022, 14(8):1611. |
[1] | WANG Yawen, ZHANG Yingying, NIU Wenyan. Influence of glycated hemoglobin A1c on pathogens of urinary tract infection in patients with type 2 diabetes mellitus [J]. Laboratory Medicine, 2024, 39(9): 895-899. |
[2] | CAI Min, ZHANG Hui. Research progress for CRE infection in intensive care unit patients [J]. Laboratory Medicine, 2024, 39(9): 913-918. |
[3] | HUANG Linling, XU Meirong, SHEN Xiaowen, GU LingLi, SHEN Hongmei. Changes and significance of autophagy in peripheral blood lymphocytes of patients with carbapenem-resistant Enterobacteriaceae-bloodstream infection [J]. Laboratory Medicine, 2024, 39(8): 759-763. |
[4] | YAN Jianghong, WANG Le, MA Lin, YANG Shuo, GUO Weiwei, ZHAO Mengchuan, LIU Zehao, ZHAI Xiaoying. Clinical characteristics of acute lymphoblastic leukemia children infected with Epstein-Barr virus [J]. Laboratory Medicine, 2024, 39(6): 583-586. |
[5] | WANG Xuqin, LIN Qianru, FENG Wanqing, DONG Yuan, YU Xiaolei, LIU Changhe, NING Zhen, SHEN Xin, PAN Qichao, LIN Yi. Validation of HIV-1 integrase genotyping sequence assay [J]. Laboratory Medicine, 2024, 39(4): 369-375. |
[6] | SUN Kangde, YU Zhongmin, YAN Yuzhong. Roles on early diagnosis and prognosis of different infection indicators for bloodstream infection [J]. Laboratory Medicine, 2024, 39(3): 222-226. |
[7] | YANG Jing, LIU Huapeng, LIU Ni. Role of serum MyD88 and TRAF-6 combined determination in diagnosis and prognosis of severe acute respiratory tract infection in children [J]. Laboratory Medicine, 2024, 39(3): 237-242. |
[8] | YU Feng, HU Longhua, XIAO Yanping, YANG Junping. Virulence genes and molecular characteristics of Klebsiella pneumoniae isolated from bloodstream infection patients [J]. Laboratory Medicine, 2024, 39(3): 249-255. |
[9] | CHEN Huan, DONG Fang, LÜ Zhiyong, ZHEN Jinghui, CHEN Mei, SU Jianrong. Serotypes and drug resistance of invasive Streptococcus agalactiae in children [J]. Laboratory Medicine, 2024, 39(3): 260-264. |
[10] | LIU Yang, HE Chengshan, JIANG Xiudi, LU Zhicheng. HBV PreS/S region gene mutation inducing hepatocyte endoplasmic reticulum stress causing hepatocellular carcinoma [J]. Laboratory Medicine, 2024, 39(12): 1229-1233. |
[11] | ZHU Jieke, ZHOU Peng, LUO Ying, WU Maofeng, XUAN Shuxia, CHEN Chen, QI Huaxin, OUYANG Yu, YIN Weiguo. Correlation of HPV combined with lower genital tract pathogen infection and cervical lesion [J]. Laboratory Medicine, 2024, 39(11): 1097-1100. |
[12] | SHANG Yuanjiang, ZHU Guoqing, ZHANG Lei, SHEN Dandan, PAN Qiuhui. Application of metagenomic next-generation sequencing and traditional methods in central nervous system infection [J]. Laboratory Medicine, 2024, 39(11): 1101-1107. |
[13] | LI Teng, JIA Qin, SUN Pingping, WEN Donghua, XUAN Qiankun. Clinical application of different determination methods for influenza A virus [J]. Laboratory Medicine, 2024, 39(11): 1108-1112. |
[14] | WANG Zhaohui, ZHENG Zhenlu, LI Ruina, MA Yuanyuan, XU Hui, WEI Zhenhong, JIA Yanjuan, QI Xiaoming, GAO Xiaoling. Study of latent tuberculosis infection mechanism of DosR antigen Rv2626c inducing macrophage activation through lncRNA MacORIS [J]. Laboratory Medicine, 2024, 39(10): 923-932. |
[15] | QIN Zehui, CHEN Qiuyu, LIANG Fengrui, SONG Yuqi, YE Liping, LIU Xiangtian, TIAN Xinghan. Construction of prognostic decision tree model of Staphylococcus aureus bloodstream infection in intensive care unit based on MIMIC-Ⅳ database data [J]. Laboratory Medicine, 2024, 39(10): 999-1004. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||