Laboratory Medicine ›› 2025, Vol. 40 ›› Issue (5): 503-507.DOI: 10.3969/j.issn.1673-8640.2025.05.016
Previous Articles Next Articles
Received:
2024-06-06
Revised:
2024-11-23
Online:
2025-05-30
Published:
2025-06-04
CLC Number:
YAO Lifeng, ZHANG Ling. Research progress on clinical significance of monocyte distribution width in infection and inflammatory diseases[J]. Laboratory Medicine, 2025, 40(5): 503-507.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2025.05.016
[1] | SERBINA N V, JIA T, HOHL T M, et al. Monocyte-mediated defense against microbial pathogens[J]. Annu Rev Immunol, 2008, 26:421-452. |
[2] | ZIEGLER-HEITBROCK L, ANCUTA P, CROWE S, et al. Nomenclature of monocytes and dendritic cells in blood[J]. Blood, 2010, 116(16):e74-e80. |
[3] | FAJGENBAUM D C, JUNE C H. Cytokine storm[J]. N Engl J Med, 2020, 383(23):2255-2273. |
[4] | AGNELLO L, CIACCIO A M, VIDALI M, et al. Monocyte distribution width(MDW)in sepsis[J]. Clin Chim Acta, 2023, 548:117511. |
[5] | SCHULZ M, ZAMBRANO F, SCHUPPE H C, et al. Monocyte-derived extracellular trap(MET)formation induces aggregation and affects motility of human spermatozoa in vitro[J]. Syst Biol Reprod Med, 2019, 65(5):357-366. |
[6] | LAÍNEZ MARTÍNEZ S, GONZÁLEZ DEL CASTILLO J. Usefulness of monocyte distribution width(MDW)as a sepsis biomarker[J]. Rev Esp Quimioter, 2022, 35(Suppl 1):2-5. |
[7] | RIVA G, CASTELLANO S, NASILLO V, et al. Monocyte distribution width(MDW)as novel inflammatory marker with prognostic significance in COVID-19 patients[J]. Sci Rep, 2021, 11(1):12716. |
[8] | AGNELLO L, LO SASSO B, VIDALI M, et al. Validation of monocyte distribution width decisional cutoff for sepsis detection in the acute setting[J]. Int J Lab Hematol, 2021, 43(4):183-185. |
[9] | AGNELLO L, GIGLIO R V, GAMBINO C M, et al. Time-dependent stability of monocyte distribution width(MDW)[J]. Clin Chim Acta, 2022, 533:40-41. |
[10] | AGNELLO L, LO SASSO B, BIVONA G, et al. Reference interval of monocyte distribution width(MDW)in healthy blood donors[J]. Clin Chim Acta, 2020, 510:272-277. |
[11] |
YONKER L M, BADAKI-MAKUN O, ARYA P, et al. Monocyte anisocytosis increases during multisystem inflammatory syndrome in children with cardiovascular complications[J]. BMC Infect Dis, 2022, 22(1):563.
DOI PMID |
[12] | CROUSER E D, PARRILLO J E, MARTIN G S, et al. Monocyte distribution width enhances early sepsis detection in the emergency department beyond SIRS and qSOFA[J]. J Intensive Care, 2020, 8:33. |
[13] | CROUSER E D, PARRILLO J E, SEYMOUR C W, et al. Monocyte distribution width:a novel indicator of sepsis-2 and sepsis-3 in high-risk emergency department patients[J]. Crit Care Med, 2019, 47(8):1018-1025. |
[14] |
PAOLI C J, REYNOLDS M A, SINHA M, et al. Epidemiology and costs of sepsis in the united states-an analysis based on timing of diagnosis and severity level[J]. Crit Care Med, 2018, 46(12):1889-1897.
DOI PMID |
[15] | HUANG Y H, CHEN C J, SHAO S C, et al. Comparison of the diagnostic accuracies of monocyte distribution width,procalcitonin,and c-reactive protein for sepsis:a systematic review and meta-analysis[J]. Crit Care Med, 2023, 51(5):e106-e114. |
[16] | POLILLI E, FRATTARI A, ESPOSITO J E, et al. Monocyte distribution width(MDW)as a new tool for the prediction of sepsis in critically ill patients:a preliminary investigation in an intensive care unit[J]. BMC Emerg Med, 2021, 21(1):147. |
[17] | WOO A, OH D K, PARK C J, et al. Monocyte distribution width compared with C-reactive protein and procalcitonin for early sepsis detection in the emergency department[J]. PloS one, 2021, 16(4):e0250101. |
[18] | HAUSFATER P, ROBERT BOTER N, MORALES INDIANO C, et al. Monocyte distribution width(MDW)performance as an early sepsis indicator in the emergency department:comparison with CRP and procalcitonin in a multicenter international European prospective study[J]. Crit Care, 2021, 25(1):227. |
[19] |
FINGERLE G, PFORTE A, PASSLICK B, et al. The novel subset of CD14+/CD16+ blood monocytes is expanded in sepsis patients[J]. Blood, 1993, 82(10):3170-3176.
PMID |
[20] | JO S J, KIM S W, CHOI J H, et al. Monocyte distribution width(MDW)as a useful indicator for early screening of sepsis and discriminating false positive blood cultures[J]. PloS one, 2022, 17(12):e0279374. |
[21] | MUBARAKI M A, FAQIHI A, ALQHTANI F, et al. Blood biomarkers of neonatal sepsis with special emphasis on the monocyte distribution width value as an early sepsis index[J]. Medicina(Kaunas), 2023, 59(8):1425. |
[22] | HIRSH M, MAHAMID E, BASHENKO Y, et al. Overexpression of the high-affinity Fcgamma receptor(CD64)is associated with leukocyte dysfunction in sepsis[J]. Shock, 2001, 16(2):102-108. |
[23] | ZHOU Y, ZHANG Y, JOHNSON A, et al. Combined CD25,CD64,and CD69 biomarker panel for flow cytometry diagnosis of sepsis[J]. Talanta, 2019, 191:216-221. |
[24] | 陈国昇, 文大林, 种慧敏, 等. 外周血单核细胞亚群及CD64表达水平对脓毒症诊断和预后评估的价值[J]. 中华危重病急救医学, 2022, 34(9):921-926. |
[25] | GROSELJ-GRENC M, IHAN A, PAVCNIK-ARNOL M, et al. Neutrophil and monocyte CD64 indexes,lipopolysaccharide-binding protein,procalcitonin and C-reactive protein in sepsis of critically ill neonates and children[J]. Intensive Care Med, 2009, 35(11):1950-1958. |
[26] | OGNIBENE A, LORUBBIO M, MAGLIOCCA P, et al. Elevated monocyte distribution width in COVID-19 patients:the contribution of the novel sepsis indicator[J]. Clin Chim Acta, 2020, 509:22-24. |
[27] | LIGI D, LO SASSO B, GIGLIO R V, et al. Circulating histones contribute to monocyte and MDW alterations as common mediators in classical and COVID-19 sepsis[J]. Crit Care, 2022, 26(1):260. |
[28] | LORUBBIO M, TACCONI D, IANNELLI G, et al. The role of monocyte distribution width(MDW)in the prognosis and monitoring of COVID-19 patients[J]. Clin Biochem, 2022, 103:29-31. |
[29] | BADAKI-MAKUN O, LEVIN S, DEBRAINE A, et al. Monocyte distribution width as a pragmatic screen for SARS-CoV-2 or influenza infection[J]. Sci Rep, 2022, 12(1):21528. |
[30] | LIN H A, LIN S F, CHANG H W, et al. Clinical impact of monocyte distribution width and neutrophil-to-lymphocyte ratio for distinguishing COVID-19 and influenza from other upper respiratory tract infections:a pilot study[J]. PloS one, 2020, 15(11):e0241262. |
[31] | SHEN T, CAO X, SHI J, et al. The morphological changes of monocytes in peripheral blood as a potential indicator for predicting active pulmonary tuberculosis[J]. Clin Chim Acta, 2018, 481:189-192. |
[32] | SHRIVASTAVA V, AHMAD S, MITTAL G, et al. Evaluation of haematological and volume,conductivity and scatter parameters of leucocytes for aetiological diagnosis of undifferentiated fevers[J]. Trans R Soc Trop Med Hyg, 2017, 111(12):546-554. |
[33] | POOTTASANE N, PHORNPRASITSAENG P, ONTHONG Y, et al. Predictive score for dengue infection with complete blood count parameters,including the monocyte distribution width:a retrospective single-center derivation and validation study[J]. Am J Trop Med Hyg, 2023, 109(4):926-932. |
[34] | 吴华军, 王宇军, 田俊华. 外周血淋巴细胞、单核细胞VCS参数与异型淋巴细胞相关性研究[J]. 检验医学, 2012, 27(10):861-862. |
[35] | LEY K, LAUDANNA C, CYBULSKY M I, et al. Getting to the site of inflammation:the leukocyte adhesion cascade updated[J]. Nat Rev Immunol, 2007, 7(9):678-689. |
[36] | CHANG C Y, HSU T Y, HE G Y, et al. Utility of monocyte distribution width in the differential diagnosis between simple and complicated diverticulitis:a retrospective cohort study[J]. BMC Gastroenterol, 2023, 23(1):96. |
[37] | KAO C H, LIU Y H, CHEN W K, et al. Value of monocyte distribution width for predicting severe cholecystitis:a retrospective cohort study[J]. Clin Chem Lab Med, 2023, 61(10):1850-1857. |
[38] | 黄思思, 谢远强. 肝硬化患者血小板和单核细胞的参数变化及意义[J]. 国际检验医学杂志, 2016, 37(4):555-556. |
[39] | LIN S, YANG X, YANG X, et al. Monocyte distribution width as a promising biomarker for differential diagnosis of chronic hepatitis,cirrhosis,and hepatocellular carcinoma[J]. Front Immunol, 2024, 15:1406671. |
[40] | 陈碧乐, 朱丽青. 淋巴和单核细胞VCS参数在自身免疫性疾病中的变化及意义[J]. 实用医学杂志, 2013, 29(5):813-815. |
[41] | 牛真珍, 伊吉普, 袁松波, 等. 单核细胞VCS参数在肿瘤患者放化疗前后的变化及意义[J]. 中国卫生检验杂志, 2016, 26(16):2341-2342. |
[1] | CHEN Qun, LUO Qizhi, LIANG Hongmei, WU Yuanru, HE Dahui, LIAO Guoqiang, LIN Liyun, LU Xiaojing, YANG Dandan. Change and role of glycolipid metabolism markers in patients with benign prostatic hyperplasia [J]. Laboratory Medicine, 2025, 40(5): 443-449. |
[2] | YU Jiajie, ZHANG Zhizhi, LUO Qingqiong, KE Xing. Predicting early colorectal tumor risk using a deep learning model based on multiple serum tumor markers [J]. Laboratory Medicine, 2025, 40(3): 253-258. |
[3] | YU Xue, QI Aihong, LI Jinhui, QUAN Zhihui, LI Kui, QIU Yurong. Application role of an AI-patient based real time quality control intelligent monitoring platform for risk quality management of serum tumor markers [J]. Laboratory Medicine, 2025, 40(3): 264-270. |
[4] | ZHANG Haoyang, LU Lin, ZONG Ming, HE Long, DING Yuanyuan, FAN Lieying. Diagnostic and predictive value of white blood cell population data in patients with sepsis [J]. Laboratory Medicine, 2025, 40(3): 271-277. |
[5] | ZHANG Xia, YIN Yanjun, FU Zhixuan, KE Jiangwei. Genetic analysis of a child with small supernumerary marker chromosomes by chromosomal microarray analysis [J]. Laboratory Medicine, 2025, 40(2): 131-134. |
[6] | GUO Fengxia, HU Bing, SHA Yanhua. Role of methyltransferase-like protein 14 in patients with coronary heart disease [J]. Laboratory Medicine, 2025, 40(1): 54-58. |
[7] | WANG Tiankai, LIU Lin, JIN Peipei, WANG Fang, DING Ning. Clinical value of new neutrophil parameter NEU-X,NEU-Y and NEU-Z in diagnosis of sepsis [J]. Laboratory Medicine, 2024, 39(7): 682-686. |
[8] | JIANG Jingjing, GU Ping, WANG Chengyun, ZHANG Fan, SHEN Huiying, PAN Qiuhui, WANG Jing. Changes and clinical significance of procalcitonin and coagulation function indicators in children with sepsis [J]. Laboratory Medicine, 2024, 39(6): 573-577. |
[9] | WANG Rong, GAO Chunfang. Application progress of exosomal glycosylation in diagnosis and treatment of tumors [J]. Laboratory Medicine, 2024, 39(4): 404-409. |
[10] | ZOU Chen, XU Runhao, DING Yi, ZHANG Jie, WENG Wenhao, WANG Zhenhua, CAO Yun. Colorectal cancer screening model based on ProteomeXchange database [J]. Laboratory Medicine, 2024, 39(12): 1181-1189. |
[11] | MENG Qiang, WANG Shuang, BAI Zhou, HUANG Qian, FU Yang. Role of TLR9 of red blood cell membrane surface in sepsis patients with anemia [J]. Laboratory Medicine, 2024, 39(10): 933-938. |
[12] | LEI Ming, ZHAI Li, WEI Ying, LIN Yichen, GUO Mengyue. Application of nomogram model based on clinical characteristics and serum tumor markers in differential diagnosis of benign and malignant lung lesions [J]. Laboratory Medicine, 2024, 39(10): 956-962. |
[13] | LIU Jianxing, WANG Jinpeng, GENG Xinlong, WANG Shan. Role of urinary exosome miR-214 expression in diagnosis and prognosis assessment of clear cell renal cell carcinoma [J]. Laboratory Medicine, 2024, 39(10): 969-974. |
[14] | LIANG Dong, MEI Yue, WANG Tengjiao, YU Dong. Characteristic of blood microbiota of postoperative sepsis based on cfDNA NGS [J]. Laboratory Medicine, 2023, 38(8): 753-759. |
[15] | SUN Zepeng, WANG Hongbin, WANG Jiandong, SONG Dewei, XIAO Peng. Analysis and progress of peptide and protein biomarker methodology for myocardial injury [J]. Laboratory Medicine, 2023, 38(8): 784-789. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||