Laboratory Medicine ›› 2023, Vol. 38 ›› Issue (9): 818-824.DOI: 10.3969/j.issn.1673-8640.2023.09.003
Previous Articles Next Articles
SUN Chuanyu1, ZHAO Xiaojun2(), GE Shengyang1, ZHANG Yang3
Received:
2022-05-24
Revised:
2022-12-04
Online:
2023-09-30
Published:
2023-11-29
CLC Number:
SUN Chuanyu, ZHAO Xiaojun, GE Shengyang, ZHANG Yang. Transcription factors in prostate cancer progression[J]. Laboratory Medicine, 2023, 38(9): 818-824.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2023.09.003
蛋白编号 | 蛋白名称 | 肽段(95%) | 116∶114① |
---|---|---|---|
P62241 | 40S核糖体蛋白S8 | 2 | 1.53 |
P31943 | 异质核糖核蛋白H | 3 | 2.17 |
P11021 | GRP78② | 27 | 2.21 |
P09669 | 细胞色素C氧化酶6抗体 | 2 | 2.38 |
P10606 | 细胞色素c氧化酶亚单位5B,线粒体 | 7 | 2.70 |
P06576 | ATP合酶β亚单位,线粒体 | 13 | 2.83 |
P38646 | 应激70蛋白,线粒体 | 11 | 2.91 |
P21810 | 二聚糖 | 19 | 2.97 |
P49411 | 延伸因子Tu,线粒体 | 6 | 3.02 |
P22314 | 泛素样修饰活化酶1 | 5 | 3.34 |
P13667 | 蛋白二硫化物异构酶A4 | 5 | 3.77 |
Q5SSJ5 | 异染色质蛋白1-结合蛋白3 | 5 | 4.06 |
P55327 | 肿瘤蛋白D52 | 3 | 4.25 |
Q99623 | 抗增殖蛋白2 | 3 | 4.57 |
P07237 | 蛋白质二硫化物异构酶 | 17 | 4.70 |
Q9NZN4 | EH结构域蛋白2 | 2 | 5.55 |
P10809 | HSP60③,线粒体 | 25 | 5.97 |
P06748 | 核磷胺 | 10 | 7.94 |
Q15063 | 成骨细胞特异性因子2 | 13 | 9.12 |
Q00796 | 山梨醇脱氢酶 | 9 | 9.82 |
蛋白编号 | 蛋白名称 | 肽段(95%) | 116∶114① |
---|---|---|---|
P62241 | 40S核糖体蛋白S8 | 2 | 1.53 |
P31943 | 异质核糖核蛋白H | 3 | 2.17 |
P11021 | GRP78② | 27 | 2.21 |
P09669 | 细胞色素C氧化酶6抗体 | 2 | 2.38 |
P10606 | 细胞色素c氧化酶亚单位5B,线粒体 | 7 | 2.70 |
P06576 | ATP合酶β亚单位,线粒体 | 13 | 2.83 |
P38646 | 应激70蛋白,线粒体 | 11 | 2.91 |
P21810 | 二聚糖 | 19 | 2.97 |
P49411 | 延伸因子Tu,线粒体 | 6 | 3.02 |
P22314 | 泛素样修饰活化酶1 | 5 | 3.34 |
P13667 | 蛋白二硫化物异构酶A4 | 5 | 3.77 |
Q5SSJ5 | 异染色质蛋白1-结合蛋白3 | 5 | 4.06 |
P55327 | 肿瘤蛋白D52 | 3 | 4.25 |
Q99623 | 抗增殖蛋白2 | 3 | 4.57 |
P07237 | 蛋白质二硫化物异构酶 | 17 | 4.70 |
Q9NZN4 | EH结构域蛋白2 | 2 | 5.55 |
P10809 | HSP60③,线粒体 | 25 | 5.97 |
P06748 | 核磷胺 | 10 | 7.94 |
Q15063 | 成骨细胞特异性因子2 | 13 | 9.12 |
Q00796 | 山梨醇脱氢酶 | 9 | 9.82 |
蛋白编号 | 蛋白名称 | 肽段(95%) | 116∶114 |
---|---|---|---|
P17661 | 结蛋白 | 62 | 0.03 |
O95810 | 血清剥夺反应蛋白3 | 3 | 0.13 |
Q9BX66 | SORBS1 | 18 | 0.18 |
P08670 | 波形蛋白 | 65 | 0.19 |
P51911 | 钙调蛋白-1 | 43 | 0.20 |
P04792 | β-1热休克蛋白 | 15 | 0.22 |
P63267 | γ-肠平滑肌肌动蛋白 | 191 | 0.24 |
Q969G5 | 蛋白激酶C δ结合蛋白 | 6 | 0.24 |
P12109 | 胶原蛋白α-1(Ⅵ)链 | 19 | 0.25 |
P11047 | γ-1层黏连蛋白 | 9 | 0.28 |
O94875 | SORBS2 | 2 | 0.32 |
P24821 | 肌腱蛋白 | 7 | 0.35 |
Q15942 | Zyxin | 4 | 0.35 |
Q9Y490 | Talin-1 | 21 | 0.36 |
P02452 | α-1(Ⅰ)链胶原蛋白 | 92 | 0.38 |
P18206 | 黏着斑蛋白 | 15 | 0.39 |
P20774 | Mimecan | 6 | 0.40 |
Q93052 | 脂肪瘤相关抗体 | 12 | 0.41 |
Q09666 | 神经细胞分化相关蛋白 | 62 | 0.42 |
P07585 | 核心蛋白聚糖 | 12 | 0.43 |
P98160 | 基底膜特异性硫酸乙酰肝素蛋白聚糖核心蛋白 | 17 | 0.44 |
P30086 | 磷脂酰乙醇胺结合蛋白1 | 7 | 0.47 |
P06396 | 凝溶胶蛋白 | 20 | 0.49 |
P12111 | 胶原蛋白α-3(Ⅵ)链 | 63 | 0.50 |
P01834 | Ig κ链C区 | 4 | 0.54 |
P10909 | 簇集蛋白 | 3 | 0.54 |
蛋白编号 | 蛋白名称 | 肽段(95%) | 116∶114 |
---|---|---|---|
P17661 | 结蛋白 | 62 | 0.03 |
O95810 | 血清剥夺反应蛋白3 | 3 | 0.13 |
Q9BX66 | SORBS1 | 18 | 0.18 |
P08670 | 波形蛋白 | 65 | 0.19 |
P51911 | 钙调蛋白-1 | 43 | 0.20 |
P04792 | β-1热休克蛋白 | 15 | 0.22 |
P63267 | γ-肠平滑肌肌动蛋白 | 191 | 0.24 |
Q969G5 | 蛋白激酶C δ结合蛋白 | 6 | 0.24 |
P12109 | 胶原蛋白α-1(Ⅵ)链 | 19 | 0.25 |
P11047 | γ-1层黏连蛋白 | 9 | 0.28 |
O94875 | SORBS2 | 2 | 0.32 |
P24821 | 肌腱蛋白 | 7 | 0.35 |
Q15942 | Zyxin | 4 | 0.35 |
Q9Y490 | Talin-1 | 21 | 0.36 |
P02452 | α-1(Ⅰ)链胶原蛋白 | 92 | 0.38 |
P18206 | 黏着斑蛋白 | 15 | 0.39 |
P20774 | Mimecan | 6 | 0.40 |
Q93052 | 脂肪瘤相关抗体 | 12 | 0.41 |
Q09666 | 神经细胞分化相关蛋白 | 62 | 0.42 |
P07585 | 核心蛋白聚糖 | 12 | 0.43 |
P98160 | 基底膜特异性硫酸乙酰肝素蛋白聚糖核心蛋白 | 17 | 0.44 |
P30086 | 磷脂酰乙醇胺结合蛋白1 | 7 | 0.47 |
P06396 | 凝溶胶蛋白 | 20 | 0.49 |
P12111 | 胶原蛋白α-3(Ⅵ)链 | 63 | 0.50 |
P01834 | Ig κ链C区 | 4 | 0.54 |
P10909 | 簇集蛋白 | 3 | 0.54 |
序号 | 转录因子 | GO富集生物过程 | 总节点数/个 | 根节点数/个 | P值 |
---|---|---|---|---|---|
1 | SP1 | 细胞组分转移、细胞黏附调控、生物特性调控 | 19 | 18 | 9.23×10-57 |
2 | p53 | 细胞凋亡的负调控 | 11 | 10 | 4.70×10-31 |
3 | YY1 | 细胞、器官发育、生物过程的负调控,细胞黏附的负调控 | 10 | 9 | 6.55×10-28 |
4 | AR | 细胞凋亡负调控,抑制细胞增殖 | 8 | 7 | 1.14×10-21 |
5 | c-Myc | 细胞凋亡负调控,Caspase②活性调节 | 8 | 7 | 1.14×10-21 |
6 | Slug | 生物过程的负调节,参与氧化应激反应 | 48 | 28 | 1.12×10-78 |
序号 | 转录因子 | GO富集生物过程 | 总节点数/个 | 根节点数/个 | P值 |
---|---|---|---|---|---|
1 | SP1 | 细胞组分转移、细胞黏附调控、生物特性调控 | 19 | 18 | 9.23×10-57 |
2 | p53 | 细胞凋亡的负调控 | 11 | 10 | 4.70×10-31 |
3 | YY1 | 细胞、器官发育、生物过程的负调控,细胞黏附的负调控 | 10 | 9 | 6.55×10-28 |
4 | AR | 细胞凋亡负调控,抑制细胞增殖 | 8 | 7 | 1.14×10-21 |
5 | c-Myc | 细胞凋亡负调控,Caspase②活性调节 | 8 | 7 | 1.14×10-21 |
6 | Slug | 生物过程的负调节,参与氧化应激反应 | 48 | 28 | 1.12×10-78 |
[1] |
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics,2022[J]. CA Cancer J Clin, 2022, 72(1):7-33.
DOI URL |
[2] |
GE S, MI Y, ZHAO X, et al. Characterization and validation of long noncoding RNAs as new candidates in prostate cancer[J]. Cancer Cell Int, 2020, 20(1):531.
DOI PMID |
[3] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020:globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249.
DOI URL |
[4] |
CHEN Q, FU L, HU J, et al. Silencing of PSMC2 inhibits development and metastasis of prostate cancer through regulating proliferation,apoptosis and migration[J]. Cancer Cell Int, 2021, 21(1):235.
DOI |
[5] |
AFFRONTI H C, ROWSAM A M, PELLERITE A J, et al. Pharmacological polyamine catabolism upregulation with methionine salvage pathway inhibition as an effective prostate cancer therapy[J]. Nat Commun, 2020, 11(1):52.
DOI PMID |
[6] |
LONG P, ZHANG L, HUANG B, et al. Integrating genome sequence and structural data for statistical learning to predict transcription factor binding sites[J]. Nucleic Acids Res, 2020, 48(22):12604-12617.
DOI PMID |
[7] |
YANG M, HUANG W, SUN Y, et al. Prognosis and modulation mechanisms of COMMD6 in human tumours based on expression profiling and comprehensive bioinformatics analysis[J]. Br J Cancer, 2019, 121(8):699-709.
DOI |
[8] |
GONDANE A, GIRMAY S, HELEVÄ A, et al. O-GlcNAc transferase couples MRE11 to transcriptionally active chromatin to suppress DNA damage[J]. J Biomed Sci, 2022, 29(1):13.
DOI PMID |
[9] |
LOU S, LI T, KONG X, et al. TopicNet:a framework for measuring transcriptional regulatory network change[J]. Bioinformatics, 2020, 36(Suppl 1):i474-i481.
DOI URL |
[10] |
SUN C Y, MI Y Y, GE S Y, et al. Tumor- and osteoblast-derived periostin in prostate cancer bone metastases[J]. Front Oncol, 2022, 11:795712.
DOI URL |
[11] |
SUN C, SONG C, MA Z, et al. Periostin identified as a potential biomarker of prostate cancer by iTRAQ-proteomics analysis of prostate biopsy[J]. Proteome Sci, 2011, 9:22.
DOI PMID |
[12] |
SUN Y, XU K, HE M, et al. Overexpression of glypican 5(GPC5) inhibits prostate cancer cell proliferation and invasion via suppressing Sp1-mediated EMT and activation of Wnt/β-catenin signaling[J]. Oncol Res, 2018, 26(4):565-572.
DOI URL |
[13] | KANG D, ZUO W, WU Q, et al. Inhibition of specificity protein 1 is involved in phloretin-induced suppression of prostate cancer[J]. Biomed Res Int, 2020, 2020:1358674. |
[14] |
HAN D S, LEE E O. Sp1 plays a key role in vasculogenic mimicry of human prostate cancer cells[J]. Int J Mol Sci, 2022, 23(3):1321.
DOI URL |
[15] |
TAKAYAMA K I, SUZUKI T, FUJIMURA T, et al. Association of USP 10 with G3BP2 inhibits p53 signaling and contributes to poor outcome in prostate cancer[J]. Mol Cancer Res, 2018, 16(5):846-856.
DOI URL |
[16] |
ASHIKARI D, TAKAYAMA K, TANAKA T, et al. Androgen induces G3BP2 and SUMO-mediated p53 nuclear export in prostate cancer[J]. Oncogene, 2017, 36(45):6272-6281.
DOI PMID |
[17] |
PASCAL L E, WANG Y, ZHONG M, et al. EAF2 and p53 co-regulate STAT3 activation in prostate cancer[J]. Neoplasia, 2018, 20(4):351-363.
DOI PMID |
[18] |
SARVAGALLA S, KOLAPALLI S P, VALLABHAPURAPU S. The two sides of YY1 in cancer:a friend and a foe[J]. Front Oncol, 2019, 9:1230.
DOI URL |
[19] |
XU C, TSAI Y H, GALBO P M, et al. Cistrome analysis of YY1 uncovers a regulatory axis of YY1:BRD2/4-PFKP during tumorigenesis of advanced prostate cancer[J]. Nucleic Acids Res, 2021, 49(9):4971-4988.
DOI PMID |
[20] |
CAMACHO-MOCTEZUMA B, QUEVEDO-CASTILLO M, MELENDEZ-ZAJGLA J, et al. YY1 negatively regulates the XAF1 gene expression in prostate cancer[J]. Biochem Biophys Res Commun, 2019, 508(3):973-979.
DOI URL |
[21] |
LU C, BROWN L C, ANTONARAKIS E S, et al. Androgen receptor variant-driven prostate cancer Ⅱ:advances in laboratory investigations[J]. Prostate Cancer Prostatic Dis, 2020, 23(3):381-397.
DOI |
[22] |
FRAME F M, MAITLAND N J. Epigenetic control of gene expression in the normal and malignant human prostate:a rapid response which promotes therapeutic resistance[J]. Int J Mol Sci, 2019, 20(10):2437.
DOI URL |
[23] |
NANDA J S, AWADALLAH W N, KOHRT S E, et al. Increased nuclear factor I/B expression in prostate cancer correlates with AR expression[J]. Prostate, 2020, 80(13):1058-1070.
DOI PMID |
[24] |
SHORNING B Y, DASS M S, SMALLEY M J, et al. The PI3K-AKT-mTOR pathway and prostate cancer:at the crossroads of AR,MAPK,and WNT signaling[J]. Int J Mol Sci, 2020, 21(12):4507.
DOI URL |
[25] |
LABBÉ D P, ZADRA G, YANG M, et al. High-fat diet fuels prostate cancer progression by rewiring the metabolome and amplifying the MYC program[J]. Nat Commun, 2019, 10(1):4358.
DOI PMID |
[26] |
LABBÉ D P, BROWN M. Transcriptional regulation in prostate cancer[J]. Cold Spring Harb Perspect Med, 2018, 8(11):a030437.
DOI URL |
[27] |
MICKOVA A, KHARAISHVILI G, KURFURSTOVA D, et al. Skp2 and Slug are coexpressed in aggressive prostate cancer and inhibited by neddylation blockade[J]. Int J Mol Sci, 2021, 22(6):2844.
DOI URL |
[28] |
IWASAKI K, NINOMIYA R, SHIN T, et al. Chronic hypoxia-induced slug promotes invasive behavior of prostate cancer cells by activating expression of ephrin-B1[J]. Cancer Sci, 2018, 109(10):3159-3170.
DOI URL |
[29] |
MARCHETTI C, GAVAZZO P, BURLANDO B. Epigallocatechin-3-gallate mobilizes intracellular Ca2+ in prostate cancer cells through combined Ca2+ entry and Ca2+-induced Ca2+ release[J]. Life Sci, 2020, 258:118232.
DOI URL |
[30] |
KHODAYARI MOEZ E, PYNE S, DINU I. Association between bivariate expression of key oncogenes and metabolic phenotypes of patients with prostate cancer[J]. Comput Biol Med, 2018, 103:55-63.
DOI PMID |
[31] |
VASILEIOU C, BEFANI C, DIMAS K, et al. FGF-2 and HGF reverse abiraterone's effect οn intracellular levels of DHT in androgen-dependent and androgen independent prostate cancer cell lines[J]. J BUON, 2020, 25(2):1141-1147.
PMID |
[32] |
DI ZAZZO E, GALASSO G, GIOVANNELLI P, et al. Estrogens and their receptors in prostate cancer:therapeutic implications[J]. Front Oncol, 2018, 8:2.
DOI URL |
[1] | JI Ran, LI Na, ZHANG Yu, LIU Yiming. Changes of serum FoxO3a and Cav-1 levels in children with craniocerebral trauma and their clinical significance [J]. Laboratory Medicine, 2024, 39(8): 728-732. |
[2] | FANG Dandong, CHENG Gang, HUANG Wei, LIU Xiaonan, MAO Jian, HOU Baosen, LIU Shimin. Expression of lncRNA SOX21-AS1 and miR-875-5p in glioma tissues and relationship with prognosis of patients [J]. Laboratory Medicine, 2024, 39(3): 209-214. |
[3] | ZOU Chen, XU Runhao, DING Yi, ZHANG Jie, WENG Wenhao, WANG Zhenhua, CAO Yun. Colorectal cancer screening model based on ProteomeXchange database [J]. Laboratory Medicine, 2024, 39(12): 1181-1189. |
[4] | ZHANG Qin, YAO Hanxin, WANG Boyu, JU Xinwei, XU Wei. Diagnostic efficacy evaluation of t-PSA and its derived indicator PHI and PI-RADS score for prostate cancer [J]. Laboratory Medicine, 2024, 39(11): 1084-1090. |
[5] | PENG Wei, LI Yungai, XU Jing, LIU Hua, YANG Cuixia, SHEN Yunyue. Serum inflammatory factors combined with PSA and f-PSA in the auxiliary diagnosis of prostate cancer [J]. Laboratory Medicine, 2023, 38(9): 849-854. |
[6] | WU Jiong, HU Jiahua, SHI Meifang, LIU Tao, DAI Jie, LU Xinyi, ZOU Zheng. Research progress of biomarkers of prostate cancer [J]. Laboratory Medicine, 2023, 38(2): 190-195. |
[7] | BAI Wei, WANG Bin, GUO Jiarui, ZHU Guangpu, ZHU Liyan. Expression of PBX1 in osteosarcoma tissues and its influence on prognosis [J]. Laboratory Medicine, 2023, 38(10): 926-929. |
[8] | YE Jingwen, SHEN Yunyue, LIU Yiwen, HE Yiqing, DU Yan, ZHANG Guoliang, GAO Feng, YANG Cuixia. Role of MAPK/ERK signaling pathway in reversing endocrine resistance of breast cancer [J]. Laboratory Medicine, 2022, 37(4): 342-348. |
[9] | WANG Linlin, XU Lili, FAN Jun, QIAN Yu. Relationship between oxidative stress markers with prostatic hyperplasia and prostate cancer [J]. Laboratory Medicine, 2022, 37(12): 1135-1140. |
[10] | QUAN Heng, ZHU Jing, LIAO Huanjin, WU Jun. Role of p2PSA,p2PSA% and PHI in the diagnosis of prostate cancer [J]. Laboratory Medicine, 2021, 36(7): 705-709. |
[11] | HUANG Xiaofeng, FAN Xueming, YAO Tianyue, YUAN Wenhua, ZHAO Zhiyun, SONG Yunxiao. Correlation between red cell distribution width and prostate cancer [J]. Laboratory Medicine, 2021, 36(6): 590-595. |
[12] | LI Junsheng, SONG Yunxiao, CHENG Jie. Roles of pretreatment PLR,NLR and LMR in the prognosis of prostate cancer [J]. Laboratory Medicine, 2021, 36(6): 631-636. |
[13] | YU Ying, LI Jianjie, LI Hanhua, HUANG Juan, WENG Wenhao, CHEN Xuefei. Inhibit miR-4429 proliferation,migration and invasion of prostate cancer cells by targeting metadherin [J]. Laboratory Medicine, 2021, 36(12): 1267-1273. |
[14] | LI Chanchan, WANG Ru, LUO Wenying. Research progress of Pseudomonas aeruginosa transcription factor PsrA [J]. Laboratory Medicine, 2020, 35(8): 832-836. |
[15] | HUANG Yi, WANG Wenjuan, XU Jing, SHEN Yunyue, LIU Hua, YANG Cuixia. Role of p2PSA and its related marker PHI in the diagnosis of prostate cancer [J]. Laboratory Medicine, 2019, 34(7): 600-604. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||