Laboratory Medicine ›› 2022, Vol. 37 ›› Issue (10): 974-978.DOI: 10.3969/j.issn.1673-8640.2022.010.013
Previous Articles Next Articles
ZHANG Yaru1, LING Liyan1(), CHEN Min2
Received:
2021-10-25
Revised:
2022-01-17
Online:
2022-10-30
Published:
2022-11-14
Contact:
LING Liyan
CLC Number:
ZHANG Yaru, LING Liyan, CHEN Min. Comparison of EUCAST and CLSI broth microdilution methods for the susceptibility testing against Candida albicans[J]. Laboratory Medicine, 2022, 37(10): 974-978.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.shjyyx.com/EN/10.3969/j.issn.1673-8640.2022.010.013
药物名称 | MIC | EA/% | 几何均数 | |||||
---|---|---|---|---|---|---|---|---|
EUCAST方法/(mg/L) | CLSI方法/ (μg/mL) | ±1浓度稀释 梯度 | ±2浓度稀释 梯度 | EUCAST方法 | CLSI方法 | |||
两性霉素B | 0.25~2 | 0.5~2 | 88.1 | 100 | 0.600 | 1.104 | ||
阿尼芬净 | 0.008~0.032 | 0.008~0.064 | 95.2 | 100 | 0.010 | 0.019 | ||
卡泊芬净 | 0.016~2 | 0.016~2 | 90.5 | 100 | 0.044 | 0.024 | ||
氟康唑 | 0.0125~16 | 0.025~64 | 71.4 | 95.2 | 0.616 | 1.414 | ||
伊曲康唑 | 0.008~0.5 | 0.016~1 | 83.3 | 100 | 0.020 | 0.039 | ||
米卡芬净 | 0.008~0.32 | 0.015~0.64 | 78.5 | 97.6 | 0.010 | 0.022 | ||
泊沙康唑 | 0.008~0.5 | 0.0016~0.5 | 88.1 | 100 | 0.017 | 0.035 | ||
伏立康唑 | 0.008~0.032 | 0.016~0.064 | 97.6 | 100 | 0.013 | 0.023 |
药物名称 | MIC | EA/% | 几何均数 | |||||
---|---|---|---|---|---|---|---|---|
EUCAST方法/(mg/L) | CLSI方法/ (μg/mL) | ±1浓度稀释 梯度 | ±2浓度稀释 梯度 | EUCAST方法 | CLSI方法 | |||
两性霉素B | 0.25~2 | 0.5~2 | 88.1 | 100 | 0.600 | 1.104 | ||
阿尼芬净 | 0.008~0.032 | 0.008~0.064 | 95.2 | 100 | 0.010 | 0.019 | ||
卡泊芬净 | 0.016~2 | 0.016~2 | 90.5 | 100 | 0.044 | 0.024 | ||
氟康唑 | 0.0125~16 | 0.025~64 | 71.4 | 95.2 | 0.616 | 1.414 | ||
伊曲康唑 | 0.008~0.5 | 0.016~1 | 83.3 | 100 | 0.020 | 0.039 | ||
米卡芬净 | 0.008~0.32 | 0.015~0.64 | 78.5 | 97.6 | 0.010 | 0.022 | ||
泊沙康唑 | 0.008~0.5 | 0.0016~0.5 | 88.1 | 100 | 0.017 | 0.035 | ||
伏立康唑 | 0.008~0.032 | 0.016~0.064 | 97.6 | 100 | 0.013 | 0.023 |
药物名称 | CLSI折点/(μg/mL) | EUCAST折点/(mg/L) | |||||
---|---|---|---|---|---|---|---|
敏感 | 中介 | 剂量依赖性敏感 | 耐药 | 敏感 | 耐药 | ||
两性霉素B① | ≤2 | NA | NA | >2 | ≤1 | >1 | |
阿尼芬净 | ≤0.25 | 0.5 | NA | ≥1 | ≤0.03 | >0.03 | |
卡泊芬净 | ≤0.25 | 0.5 | NA | ≥1 | NA | NA | |
氟康唑 | ≤2 | NA | 4 | ≥8 | ≤2 | >4 | |
伊曲康唑① | ≤0.12 | NA | NA | >0.12 | ≤0.06 | >0.06 | |
米卡芬净 | ≤0.25 | 0.5 | NA | ≥1 | ≤0.016 | >0.016 | |
泊沙康唑① | ≤0.06 | NA | NA | >0.06 | ≤0.06 | >0.06 | |
伏立康唑 | ≤0.125 | 0.25~0.5 | NA | ≥1 | ≤0.06 | >0.25 |
药物名称 | CLSI折点/(μg/mL) | EUCAST折点/(mg/L) | |||||
---|---|---|---|---|---|---|---|
敏感 | 中介 | 剂量依赖性敏感 | 耐药 | 敏感 | 耐药 | ||
两性霉素B① | ≤2 | NA | NA | >2 | ≤1 | >1 | |
阿尼芬净 | ≤0.25 | 0.5 | NA | ≥1 | ≤0.03 | >0.03 | |
卡泊芬净 | ≤0.25 | 0.5 | NA | ≥1 | NA | NA | |
氟康唑 | ≤2 | NA | 4 | ≥8 | ≤2 | >4 | |
伊曲康唑① | ≤0.12 | NA | NA | >0.12 | ≤0.06 | >0.06 | |
米卡芬净 | ≤0.25 | 0.5 | NA | ≥1 | ≤0.016 | >0.016 | |
泊沙康唑① | ≤0.06 | NA | NA | >0.06 | ≤0.06 | >0.06 | |
伏立康唑 | ≤0.125 | 0.25~0.5 | NA | ≥1 | ≤0.06 | >0.25 |
药物名称 | 敏感/[株(%)] | 中介/[株(%)] | 剂量依赖性敏感/[株(%)] | 耐药/[株(%)] | CA/ % | ME/ % | VME/ % | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EUCAST 方法 | CLSI 方法 | EUCAST方法 | CLSI 方法 | EUCAST方法 | CLSI 方法 | EUCAST方法 | CLSI 方法 | |||||||
两性霉素B | 42(100.0) | 42(100.0) | 0(0) | 0(0) | 100.0 | 0.0 | 0.0 | |||||||
阿尼芬净 | 42(100.0) | 42(100.0) | 0(0) | 0(0) | 0(0) | 100.0 | 0.0 | 0.0 | ||||||
卡泊芬净 | 36(85.7) | 36(85.7) | 2(4.8) | 0(0) | 4(9.5) | 6(14.3) | 95.2 | 4.8 | 0.0 | |||||
氟康唑 | 34(80.9) | 34(80.9) | 8(19.0) | 8(19.0) | 100.0 | 0.0 | 0.0 | |||||||
伊曲康唑 | 42(100.0) | 42(100.0) | 0(0) | 0(0) | 0(0) | 0(0) | 100.0 | 0.0 | 0.0 | |||||
米卡芬净 | 38(90.5) | 37(84.1) | 4(9.5) | 5(11.9) | 97.6 | 0.0 | 2.4 | |||||||
泊沙康唑 | 41(97.6) | 41(97.6) | 0(0) | 1(2.4) | 1(2.4) | 0(0) | 97.6 | 2.4 | 0.0 |
药物名称 | 敏感/[株(%)] | 中介/[株(%)] | 剂量依赖性敏感/[株(%)] | 耐药/[株(%)] | CA/ % | ME/ % | VME/ % | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EUCAST 方法 | CLSI 方法 | EUCAST方法 | CLSI 方法 | EUCAST方法 | CLSI 方法 | EUCAST方法 | CLSI 方法 | |||||||
两性霉素B | 42(100.0) | 42(100.0) | 0(0) | 0(0) | 100.0 | 0.0 | 0.0 | |||||||
阿尼芬净 | 42(100.0) | 42(100.0) | 0(0) | 0(0) | 0(0) | 100.0 | 0.0 | 0.0 | ||||||
卡泊芬净 | 36(85.7) | 36(85.7) | 2(4.8) | 0(0) | 4(9.5) | 6(14.3) | 95.2 | 4.8 | 0.0 | |||||
氟康唑 | 34(80.9) | 34(80.9) | 8(19.0) | 8(19.0) | 100.0 | 0.0 | 0.0 | |||||||
伊曲康唑 | 42(100.0) | 42(100.0) | 0(0) | 0(0) | 0(0) | 0(0) | 100.0 | 0.0 | 0.0 | |||||
米卡芬净 | 38(90.5) | 37(84.1) | 4(9.5) | 5(11.9) | 97.6 | 0.0 | 2.4 | |||||||
泊沙康唑 | 41(97.6) | 41(97.6) | 0(0) | 1(2.4) | 1(2.4) | 0(0) | 97.6 | 2.4 | 0.0 |
[1] |
BASSETTI M, SCUDELLER L, GIACOBBE D R, et al. Developing definitions for invasive fungal diseases in critically ill adult patients in intensive care units. Protocol of the FUNgal infections Definitions in ICU patients(FUNDICU)project[J]. Mycoses, 2019, 62(4):310-319.
DOI URL |
[2] |
SPITZER M, ROBBINS N, WRIGHT G D. Combinatorial strategies for combating invasive fungal infections[J]. Virulence, 2017, 8(2):169-185.
DOI PMID |
[3] |
MARTIN-LOECHES I, ANTONELLI M, CUENCA-ESTRELLA M, et al. ESICM/ESCMID task force on practical management of invasive candidiasis in critically ill patients[J]. Intensive Care Med, 2019, 45(6):789-805.
DOI URL |
[4] |
PAPPAS P G, LIONAKIS M S, ARENDRUP M C, et al. Invasive candidiasis[J]. Nat Rev Dis Primers, 2018, 4:18026.
DOI PMID |
[5] |
ROILIDES E, CARLESSE F, LEISTER-TEBBE H, et al. A prospective,open-label study to assess the safety,tolerability and efficacy of anidulafungin in the treatment of invasive candidiasis in children 2 to <18 years of age[J]. Pediatr Infect Dis J, 2019, 38(3):275-279.
DOI URL |
[6] |
LIMA W G, ALVES-NASCIMENTO L A, ANDRADE J T, et al. Are the statins promising antifungal agents against invasive candidiasis?[J]. Biomed Pharmacother, 2019, 111:270-281.
DOI PMID |
[7] | KSIEZOPOLSKA E, GABALDÓN T. Evolutionary emergence of drug resistance in Candida opportunistic pathogens[J]. Genes(Basel), 2018, 9(9):461. |
[8] | PERLIN D S, RAUTEMAA-RICHARDSON R, ALASTRUEY-IZQUIERDO A. The global problem of antifungal resistance:prevalence,mechanisms,and management[J]. Lancet Infect Dis, 2017, 17(12):e383-e392. |
[9] |
LINDBERG E, HAMMARSTRÖM H, ATAOLLAHY N, et al. Species distribution and antifungal drug susceptibilities of yeasts isolated from the blood samples of patients with candidemia[J]. Sci Rep, 2019, 9(1):3838.
DOI PMID |
[10] | Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts[S]. M27-A3,CLSI, 2008. |
[11] | Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts[S]. M27-S4,CLSI, 2012. |
[12] | Clinical and Laboratory Standards Institute. Epidemiological cutoff values for antifungal susceptibility testing[S]. M59-ED3,CLSI, 2020. |
[13] |
ARENDRUP M C, FRIBERG N, MARES M, et al. How to interpret MICs of antifungal compounds according to the revised clinical breakpoints v. 10.0 European Committee on Antimicrobial Susceptibility Testing(EUCAST)[J]. Clin Microbiol Infect, 2020, 26(11):1464-1472.
DOI URL |
[14] |
PFALLER M A, HATA K, JONES R N, et al. In vitro activity of a novel broad-spectrum antifungal,E1210,tested against Candida spp. as determined by CLSI broth microdilution method[J]. Diagn Microbiol Infect Dis, 2011, 71(2):167-170.
DOI URL |
[15] |
CLEVELAND A A, FARLEY M M, HARRISON L H, et al. Changes in incidence and antifungal drug resistance in candidemia:results from population-based laboratory surveillance in Atlanta and Baltimore,2008-2011[J]. Clin Infect Dis, 2012, 55(10):1352-1361.
DOI URL |
[16] |
PFALLER M A, CASTANHEIRA M, MESSER S A, et al. Comparison of EUCAST and CLSI broth microdilution methods for the susceptibility testing of 10 systemically active antifungal agents when tested against Candida spp[J]. Diagn Microbiol Infect Dis, 2014, 79(2):198-204.
DOI URL |
[17] | PHILIPS S, VAN HOECKE F, DE LAERE E, et al. Comparison of two commercial colorimetric broth microdilution tests for Candida susceptibility testing:Sensititre YeastOne versus MICRONAUT-AM[J]. J Fungi(Basel), 2021, 7(5):356. |
[18] |
ESPINEL-INGROFF A, CUENCA-ESTRELLAET M, CANTÓN E, et al. EUCAST and CLSI:working together towards a harmonized method for antifungal susceptibility testing[J]. Curr Fungal Infect Rep, 2013, 7(1):59-67.
DOI URL |
[19] | BEREDAKI M I, ARENDRUP M C, ANDES D, et al. The role of new posaconazole formulations in the treatment of Candida albicans infections:data from an in vitro pharmacokinetic-pharmacodynamic model[J]. Antimicrob Agents Chemother, 2021, 65(4):e01292-20. |
[20] |
ARENDRUP M C, PERLIN D S. Echinocandin resistance:an emerging clinical problem?[J]. Curr Opin Infect Dis, 2014, 27(6):484-492.
DOI URL |
[21] | 慎慧, 郭建, 张旻, 等. 上海地区临床分离念珠菌的耐药性监测[J]. 中国感染与化疗杂志, 2019, 19(3):292-299. |
[22] | PAPPAS P G, KAUFFMAN C A, ANDES D R, et al. Clinical practice guideline for the management of candidiasis:2016 update by the Infectious Diseases Society of America[J]. Clin Infect Dis, 2016, 62(4):e1-e50. |
[1] | FU Yawen, DU Yuzhen, GAO Feng. Standards of CLSI clinical laboratory automation systems [J]. Laboratory Medicine, 2020, 35(4): 370-373. |
[2] | SUN Kangde, ZHANG Jiasheng, CHEN Xu, YU Zhongmin, CHEN Fuxiang. Correlations of virulence factor expression and drug resistance for Candida albicans isolated from oral cavity [J]. Laboratory Medicine, 2019, 34(8): 730-735. |
[3] | XU Weixin, SUN Jie. Multilocus sequence typing in the molecular epidemiological study of azole-resistant Candida albicans from patients with Candida albicans vaginitis [J]. Laboratory Medicine, 2018, 33(3): 233-238. |
[4] | WANG Jinghua, YU Peijuan, GE Ping, XU Rong, CHEN Rong, LIU Xuejie, WANG Hualiang. Asymmetric fluorescence-PCR for the amplification of Candida albicans ITS-2 single-stranded DNA [J]. Laboratory Medicine, 2017, 32(3): 210-213. |
[5] | SUN Kangde, CHEN Cheng, CHEN Xu, ZHANG Jiasheng, YU Zhongmin, CHEN Fuxiang. Drug resistance and genotypes of oral Candida albicans and expressions of drug-resistant genes of oral Candida albicans [J]. Laboratory Medicine, 2017, 32(11): 979-984. |
[6] | ZHAO Hu. Drug resistance of invasive fungi and its mechanisms [J]. Laboratory Medicine, 2016, 31(9): 735-738. |
[7] | WU Yongqin, YING Chunmei. Drug resistance genes of Candida albicans to azoles and their regulation mechanisms [J]. Laboratory Medicine, 2016, 31(9): 739-743. |
[8] | WANG Ying, ZHANG Rong, LIU Jinyan, SHI Ce, LI Wenjing, ZHAO Yue, XIANG Mingjie. Correlation between C1409A missense mutation in MRR2 gene and fluconazole resistance of Candida albicans [J]. Laboratory Medicine, 2016, 31(9): 744-749. |
[9] | SUN Kangde, ZHANG Jiasheng, CHEN Xu, YU Zhongmin, CHEN Fuxiang. Methods for determining 3 pathogenic secreted hydrolytic enzymes of oral Candida albicans and their application [J]. Laboratory Medicine, 2016, 31(5): 355-358. |
[10] | LI Wenjing, SHEN Yun, LIU Jinyan, SHI Ce, WANG Ying, ZHAO Yue, XIANG Mingjie. Transcription factor Flo8 G723R and T751D mutations enhancing virulence in Candida albicans [J]. Laboratory Medicine, 2016, 31(11): 987-992. |
[11] | HUANG Shenglei, HU Bijie, CHEN Rong, ZHOU Chunmei. Rapid identification of Yeast like fungi outside of Candida albicans isolated form blood culture by two MALDI-TOF MS systems [J]. Laboratory Medicine, 2015, 30(2): 128-131. |
[12] | SHI Ce, LIU Jinyan, WEI Bing, XIANG Mingjie. The research advance of biofilm in the mechanisms of azole resistance to Candida albicans [J]. , 2014, 29(6): 692-694. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||