检验医学 ›› 2024, Vol. 39 ›› Issue (6): 615-620.DOI: 10.3969/j.issn.1673-8640.2024.06.018
• 综述 • 上一篇
收稿日期:
2023-04-19
修回日期:
2023-09-20
出版日期:
2024-06-30
发布日期:
2024-07-08
通讯作者:
汤 瑾,E-mail:tangjin6ph@126.com。
作者简介:
孙苗丽,女,1995年生,硕士,主要从事碳青霉烯耐药革兰阴性杆菌相关研究。
SUN Miaoli, WU Qiong, WANG Yingzhi, WANG Jianqiang, GAO Feng, TANG Jin()
Received:
2023-04-19
Revised:
2023-09-20
Online:
2024-06-30
Published:
2024-07-08
摘要:
近年来,碳青霉烯耐药肺炎克雷伯菌(CRKP)的检出率不断上升。CRKP耐药性强、散播迅速,感染患者病死率高,给临床治疗带来了巨大的挑战。目前,CRKP的检测方法主要包括碳青霉烯灭活法(CIM)、Carba NP试验、质谱技术、酶免疫分析法和分子检测技术。临床主要采用抗菌药物、噬菌体联合抗菌药物、疫苗和单克隆抗体等方法进行治疗。文章就CRKP检测和治疗方法的相关研究进展进行介绍,旨在为临床抗感染治疗提供新的思路。
中图分类号:
孙苗丽, 吴琼, 王颖智, 王坚镪, 高锋, 汤瑾. 碳青霉烯耐药肺炎克雷伯菌检测和治疗研究进展[J]. 检验医学, 2024, 39(6): 615-620.
SUN Miaoli, WU Qiong, WANG Yingzhi, WANG Jianqiang, GAO Feng, TANG Jin. Research progress on determination and treatment of carbapenem-resistant Klebsiella pneumoniae[J]. Laboratory Medicine, 2024, 39(6): 615-620.
[1] | YANG X, DONG N, CHAN E W, et al. Carbapenem resistance-encoding and virulence encoding conjugative plasmids in Klebsiella pneumoniae[J]. Trends Microbiol, 2021, 29(1):65-83. |
[2] | LEE C R, LEE J H, PARK K S, et al. Antimicrobial resistance of hypervirulent Klebsiella pneumoniae:epidemiology,hypervirulence-associated determinants,and resistance mechanisms[J]. Front Cell Infect Microbiol, 2017, 7:483. |
[3] | 胡付品, 郭燕, 朱德妹, 等. 2021年CHINET中国细菌耐药监测[J]. 中国感染与化疗杂志, 2022, 22(05):521-530. |
[4] | BIALEK-DAVENET S, CRISCUOLO A, AILLOUD F, et al. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups[J]. Emerg Infect Dis, 2014, 20(11):1812-1820. |
[5] | WYRES K L, WICK R R, JUDD L M, et al. Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of Klebsiella pneumoniae[J]. PLoS Genet, 2019, 15(4):e1008114. |
[6] | GU D, DONG N, ZHENG Z, et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital:a molecular epidemiological study[J]. Lancet Infect Dis, 2018, 18(1):37-46. |
[7] | NAVON-VENEZIA S, LEAVITT A, SCHWABER M J, et al. First report on a hyperepidemic clone of KPC-3-producing Klebsiella pneumoniae in Israel genetically related to a strain causing outbreaks in the United States[J]. Antimicrob Agents Chemother, 2009, 53(2):818-820. |
[8] | PAVEZ M, MAMIZUKA E M, LINCOPAN N. Early dissemination of KPC-2-producing Klebsiella pneumoniae strains in Brazil[J]. Antimicrob Agents Chemother, 2009, 53(6):2702. |
[9] | LIU P, LI X, LUO M, et al. Risk factors for carbapenem-resistant Klebsiella pneumoniae infection:a meta-analysis[J]. Microb Drug Resist, 2018, 24(2):190-198. |
[10] | ZHANG R, LIU L, ZHOU H, et al. Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae(CRE)strains in China[J]. E Bio Medicine, 2017, 19:98-106. |
[11] | TACCONELLI E, CARRARA E, SAVOLDI A, et al. Discovery,research,and development of new antibiotics:the WHO priority list of antibiotic-resistant bacteria and tuberculosis[J]. Lancet Infect Dis, 2018, 18(3):318-327. |
[12] | WANG Z, QIN R R, HUANG L, et al. Risk factors for carbapenem-resistant Klebsiella pneumoniae infection and mortality of Klebsiella pneumoniae infection[J]. Chin Med J(Engl), 2018, 131(1):56-62. |
[13] | ZHOU C, JIN L, WANG Q, et al. Bloodstream infections caused by carbapenem-resistant Enterobacterales:risk factors for mortality,antimicrobial therapy and treatment outcomes from a prospective multicenter study[J]. Infect Drug Resist, 2021, 14:731-742. |
[14] | BARTSCH S M, MCKINNELL J A, MUELLER L E, et al. Potential economic burden of carbapenem-resistant Enterobacteriaceae(CRE)in the United States[J]. Clin Microbiol Infect, 2017, 23(1):48.e9-48.e16. |
[15] | WANG M, EARLEY M, CHEN L, et al. Clinical outcomes and bacterial characteristics of carbapenem-resistant Klebsiella pneumoniae complex among patients from different global regions(CRACKLE-2):a prospective,multicentre,cohort study[J]. Lancet Infect Dis, 2022, 22(3):401-12. |
[16] | TANG M, KONG X, HAO J, et al. Epidemiological characteristics and formation mechanisms of multidrug-resistant hypervirulent Klebsiella pneumoniae[J]. Frontiers Microbiol, 2020, 11:581543. |
[17] | YANG X, SUN Q, LI J, et al. Molecular epidemiology of carbapenem-resistant hypervirulent Klebsiella pneumoniae in China[J]. Emerg Microbes Infect, 2022, 11(1):841-849. |
[18] | POIREL L, HÉRITIER C, TOLÜN V, et al. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae[J]. Antimicrob Agents Chemother, 2004, 48(1):15-22. |
[19] | MOUFTAH S F, PÁL T, HIGGINS P G, et al. Diversity of carbapenem-resistant Klebsiella pneumoniae ST14 and emergence of a subgroup with KL64 capsular locus in the Arabian Peninsula[J]. Eur J Clin Microbiol Infect Dis, 2021,2. |
[20] | UZ ZAMAN T, ALDREES M, AL JOHANI S M, et al. Multi-drug carbapenem-resistant Klebsiella pneumoniae infection carrying the OXA-48 gene and showing variations in outer membrane protein 36 causing an outbreak in a tertiary care hospital in Riyadh,Saudi Arabia[J]. Int J Infect Dis, 2014, 28:186-192. |
[21] | LI X Z, PLÉSIAT P, NIKAIDO H. The challenge of efflux-mediated antibiotic resistance in gram-negative bacteria[J]. Clin Microbiol Rev, 2015, 28(2):337-418. |
[22] | DELL'ANNUNZIATA F,DELL'AVERSANA C,DOTI N,et al. Outer membrane vesicles derived from Klebsiella pneumoniae are a driving force for horizontal gene transfer[J]. Int J Mol Sci, 2021, 22(16):8732. |
[23] |
喻华, 徐雪松, 李敏, 等. 肠杆菌目细菌碳青霉烯酶的实验室检测和临床报告规范专家共识(第二版)[J]. 中国感染与化疗杂志, 2022, 22(4):463-474.
DOI |
[24] | PIERCE V M, SIMNER P J, LONSWAY D R, et al. Modified carbapenem inactivation method for phenotypic detection of carbapenemase production among Enterobacteriaceae[J]. J Clin Microbiol, 2017, 55(8):2321-2333. |
[25] | HOWARD J C, CREIGHTON J, IKRAM R, et al. Comparison of the performance of three variations of the carbapenem inactivation method(CIM,modified CIM [mCIM] and in-house method(iCIM))for the detection of carbapenemase-producing Enterobacterales and non-fermenters[J]. J Glob Antimicrob Resist, 2020, 21:78-82. |
[26] | TSAI Y M, WANG S, CHIU H C, et al. Combination of modified carbapenem inactivation method(mCIM)and EDTA -CIM(eCIM)for phenotypic detection of carbapenemase-producing Enterobacteriaceae[J]. BMC Microbiol, 2020, 20(1):315. |
[27] | DORTET L, POIREL L, NORDMANN P. Rapid identification of carbapenemase types in Enterobacteriaceae and Pseudomonas spp. by using a biochemical test[J]. Antimicrob Agents Chemother, 2012, 56(12):6437-6440. |
[28] | MANCINI S, KIEFFER N, POIREL L, et al. Evaluation of the RAPIDEC® CARBA NP and β-CARBA® tests for rapid detection of carbapenemase-producing Enterobacteriaceae[J]. Diagn Microbiol Infect Dis, 2017, 88(4):293-297. |
[29] | TSUCHIDA S, UMEMURA H, NAKAYAMA T. Current status of matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry(MALDI-TOF MS)in clinical diagnostic microbiology[J]. Molecules, 2020, 25(20):4775. |
[30] | PAPAGIANNITSIS C C, ŠTUDENTOVÁ V, IZDEBSKI R, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry meropenem hydrolysis assay with NH4HCO3,a reliable tool for direct detection of carbapenemase activity[J]. J Clin Microbiol, 2015, 53(5):1731-1735. |
[31] | YU J, LIU J, LI Y, et al. Rapid detection of carbapenemase activity of Enterobacteriaceae isolated from positive blood cultures by MALDI-TOF MS[J]. Ann Clin Microbiol Antimicrob, 2018, 17(1):22. |
[32] | GU D, YAN Z, CAI C, et al. Comparison of the NG-Test Carba 5,colloidal gold immunoassay(CGI)test,and Xpert Carba-R for the rapid detection of carbapenemases in car bapenemase-producing organisms[J]. Antibiotics(Basel), 2023, 12(2):300. |
[33] | CODJOE F S, DONKOR E S. Carbapenem resistance:a review[J]. Med Sci(Basel), 2017, 6(1):1. |
[34] | SMITH C J, OSBORN A M. Advantages and limitations of quantitative PCR(Q-PCR)-based approaches in microbial ecology[J]. FEMS Microbiol Ecol, 2009, 67(1):6-20. |
[35] | CAI Z, TAO J, JIA T, et al. Multicenter evaluation of the Xpert Carba-R assay for detection and identification of carbapenemase genes in sputum specimens[J]. J Clin Microbiol, 2020, 58(9):e00644. |
[36] | MOUBARECK CA, HAMMOUDI HALAT D, SARTAWI M, et al. Assessment of the performance of CHROMagar KPC and Xpert Carba-R assay for the detection of carbapenem-resistant bacteria in rectal swabs:first comparative study from Abu Dhabi,United Arab Emirates[J]. J Glob Antimicrob Resist, 2020, 20:147-152. |
[37] | MCMULLEN A R, YARBROUGH M L, WALLACE M A, et al. Evaluation of genotypic and phenotypic methods to detect carbapenemase production in gram-negative Bacilli[J]. Clin Chem, 2017, 63(3):723-730. |
[38] |
AMAN R, MAHAS A, MAHFOUZ M. Nucleic acid detection using CRISPR/Cas biosensing technologies[J]. ACS Synth Biol, 2020, 9(6):1226-1233.
DOI PMID |
[39] |
LI Y, LI S, WANG J, et al. CRISPR/Cas systems towards next-generation biosensing[J]. Trends Biotechnol, 2019, 37(7):730-743.
DOI PMID |
[40] |
XU H, TANG H, LI R, et al. A new method based on LAMP-CRISPR-Cas12a-lateral flow immunochromatographic strip for detection[J]. Infect Drug Resist, 2022, 15:685-696.
DOI PMID |
[41] | CHEN Y, HUANG H B, PENG J M, et al. Efficacy and safety of ceftazidime-avibactam for the treatment of carbapenem-resistant Enterobacterales bloodstream infection:a systematic review and meta-analysis[J]. Microbiol Spectr, 2022, 10(2):e0260321. |
[42] | VAN DUIN D, LOK J J, EARLEY M, et al. Colistin versus ceftazidime-avibactam in the treatment of infections due to carbapenem-resistant Enterobacteriaceae[J]. Clin Infect Dis, 2018, 66(2):163-171. |
[43] | TUMBARELLO M, TRECARICHI E M, CORONA A, et al. Efficacy of ceftazidime-avibactam salvage therapy in patients with infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae[J]. Clin Infect Dis, 2019, 68(3):355-364. |
[44] | ZHANEL G G, LAWRENCE C K, ADAM H, et al. Imipenem-relebactam and meropenem-vaborbactam:two novel carbapenem-β-lactamase inhibitor combinations[J]. Drugs, 2018, 78(1):65-98. |
[45] | MANSOUR H, OUWEINI A E L, CHAHINE E B, et al. Imipenem/cilastatin/relebactam:a new carbapenem β-lactamase inhibitor combination[J]. Am J Health Syst Pharm, 2021, 78(8):674-683. |
[46] | PEREIRA C, COSTA P, DUARTE J, et al. Phage therapy as a potential approach in the biocontrol of pathogenic bacteria associated with shellfish consumption[J]. Int J Food Microbiol, 2021, 338:108995. |
[47] | DUC H M, SON H M, YI H P S, et al. Isolation,characterization and application of a polyvalent phage capable of controlling Salmonella and Escherichia coli O157:H7 in different food matrices[J]. Food Res Int, 2020, 131:108977. |
[48] |
TAMMA P D, COSGROVE S E, MARAGAKIS L L. Combination therapy for treatment of infections with gram-negative bacteria[J]. Clin Microbiol Rev, 2012, 25(3):450-470.
DOI PMID |
[49] | ESKENAZI A, LOOD C, WUBBOLTS J, et al. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae[J]. Nat Commun, 2022, 13(1):302. |
[50] | BAO J, WU N, ZENG Y, et al. Non-active antibiotic and bacteriophage synergism to successfully treat recurrent urinary tract infection caused by extensively drug-resistant Klebsiella pneumoniae[J]. Emerg Microbes Infect, 2020, 9(1):771-774. |
[51] | OECHSLIN F. Resistance development to bacteriophages occurring during bacteriophage therapy[J]. Viruses, 2018, 10(7):351. |
[52] | CHOI M, TENNANT S M, SIMON R, et al. Progress towards the development of Klebsiella vaccines[J]. Expert Rev Vaccines, 2018, 18(7):681-691. |
[53] | MARTIN R M, BACHMAN M A. Colonization,infection,and the accessory genome of Klebsiella pneumoniae[J]. Front Cell Infect Microbiol, 2018, 8:4. |
[54] | FOLLADOR R, HEINZ E, WYRES K L, et al. The diversity of Klebsiella pneumoniae surface polysaccharides[J]. Microb Genom, 2016, 2(8):e000073. |
[55] | WANG Q, CHANG C S, PENNINI M, et al. Target-agnostic identification of functional monoclonal antibodies against Klebsiella pneumoniae multimeric MrkA fimbrial subunit[J]. J Infect Dis, 2016, 213(11):1800-1808. |
[1] | 王亚飞, 张振军, 宋长亮, 杨琼. Notch1 mRNA和Dickkopf-1在评估非小细胞肺癌患者帕博利珠单抗治疗反应性中的价值[J]. 检验医学, 2024, 39(7): 627-633. |
[2] | 诸佩超, 宋颖, 缪颖波, 赵强, 周维, 韩姣姣, 徐翀. 血栓弹力图纤维蛋白原功能检测方法的建立[J]. 检验医学, 2024, 39(7): 696-699. |
[3] | 吴昕哲, 茆海丰, 杨晋, 左春磊, 金丹婷. MALDI-TOF MS直接靶板微滴生长测定法在CRKP快速检测中的应用[J]. 检验医学, 2024, 39(6): 587-591. |
[4] | 中国老年保健医学研究会检验医学分会, 上海市优生优育科学协会(上海市妇幼保健协会)检验医学专委会. 自动化阴道分泌物分析系统复检规则的建立与验证专家共识[J]. 检验医学, 2024, 39(5): 415-422. |
[5] | 胡刘平, 李月, 成斌, 韦宝生, 蔡建雷, 杜玉珍. 原发性肝癌经放疗和靶向治疗后继发急性早幼粒细胞白血病1例报道并文献复习[J]. 检验医学, 2024, 39(5): 510-512. |
[6] | 王绪琴, 林倩茹, 冯琬清, 董原, 郁晓磊, 刘长河, 宁镇, 沈鑫, 潘启超, 林怡. HIV-1整合酶基因序列分析方法验证[J]. 检验医学, 2024, 39(4): 369-375. |
[7] | 俞凤, 胡龙华, 肖艳萍, 杨军平. 血流感染肺炎克雷伯菌毒力基因分布和临床分子特征[J]. 检验医学, 2024, 39(3): 249-255. |
[8] | 荆梦霞, 余永国. 分子检测技术在儿童罕见遗传病中的临床应用[J]. 检验医学, 2024, 39(2): 103-106. |
[9] | 诸宏伟, 张雪灵, 王美娣, 郑迎娟. LZTR1基因Arg284His变异致Noonan综合征10型病例报道和遗传学分析[J]. 检验医学, 2024, 39(2): 120-125. |
[10] | 李宁迪, 江渊. 耐药结核病实验室诊断技术研究进展[J]. 检验医学, 2024, 39(2): 203-208. |
[11] | 缪星国, 叶慧, 苏菲菲. GeneXpert MTB/RIF检出量与结核分枝杆菌培养和利福平表型耐药的关系[J]. 检验医学, 2023, 38(9): 874-877. |
[12] | 杨雪, 朱俊, 蒋玲丽, 王青, 胡晓波. 上海地区9种新型冠状病毒核酸检测试剂盲样检测结果一致性分析[J]. 检验医学, 2023, 38(8): 776-780. |
[13] | 孙泽朋, 王洪彬, 王建东, 宋德伟, 肖鹏. 心肌损伤多肽和蛋白类标志物方法学分析和进展[J]. 检验医学, 2023, 38(8): 784-789. |
[14] | 张楚, 王建红, 李瑞, 肖艳华, 王恒, 张品肖, 徐凝馨, 夏半半. 5 696例孕妇拓展性无创产前基因检测结果[J]. 检验医学, 2023, 38(6): 553-558. |
[15] | 乌有弘, 宋云霄, 朱勇, 葛雯, 卞晓波, 袁文华, 赵智赟. 血脂水平在冠心病患者冠状动脉狭窄评估和治疗中的价值[J]. 检验医学, 2023, 38(6): 584-589. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||